Skip to main content

Advertisement

Log in

Macrophage adhesion on fibronectin evokes an increase in the elastic property of the cell membrane and cytoskeleton: an atomic force microscopy study

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Interactions between cells and microenvironments are essential to cellular functions such as survival, exocytosis and differentiation. Cell adhesion to the extracellular matrix (ECM) evokes a variety of biophysical changes in cellular organization, including modification of the cytoskeleton and plasma membrane. In fact, the cytoskeleton and plasma membrane are structures that mediate adherent contacts with the ECM; therefore, they are closely correlated. Considering that the mechanical properties of the cell could be affected by cell adhesion-induced changes in the cytoskeleton, the purpose of this study was to investigate the influence of the ECM on the elastic properties of fixed macrophage cells using atomic force microscopy. The results showed that there was an increase (~50 %) in the Young’s modulus of macrophages adhered to an ECM-coated substrate as compared with an uncoated glass substrate. In addition, cytochalasin D-treated cells had a 1.8-fold reduction of the Young’s modulus of the cells, indicating the contribution of the actin cytoskeleton to the elastic properties of the cell. Our findings show that cell adhesion influences the mechanical properties of the plasma membrane, providing new information toward understanding the influence of the ECM on elastic alterations of macrophage cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  • Bukharaev AA, Mozhanova AA, Nurgazizov NI, Ovchinnikov DV (2003) Measuring local elastic properties of cell surfaces and soft materials in liquid by atomic force microscopy. Phys Low-Dimens Str 3–4:31–37

    Google Scholar 

  • Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Bi 12:463–518

    Article  CAS  Google Scholar 

  • Bushell GR, Cahill C, Clarke FM, Gibson CT, Myhra S, Watson GS (1999) Imaging and force-distance analysis of human fibroblasts in vitro by atomic force microscopy. Cytometry 36:254–264

    Article  CAS  PubMed  Google Scholar 

  • Cappella B, Baschieri P, Frediani C, Miccoli P, Ascoli C (1997) Force-distance curves by AFM. A powerful technique for studying surface interactions. IEEE Eng Med Biol Mag 16:58–65

    Article  CAS  PubMed  Google Scholar 

  • Codan B, Martinelli V, Mestroni L, Sbaizero O (2013) Atomic force microscopy of 3T3 and SW-13 cell lines: an investigation of cell elasticity changes due to fixation. Mat Sci Eng C-Mater 33:3303–3308

    Article  CAS  Google Scholar 

  • Collins SJ (1987) The Hl-60 promyelocytic leukemia-cell line—proliferation, differentiation, and cellular oncogene expression. Blood 70:1233–1244

    CAS  PubMed  Google Scholar 

  • Dai JW, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77:3363–3370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer-Cripps AC (2011) Nanoindentation, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Gauthier NC, Masters TA, Sheetz MP (2012) Mechanical feedback between membrane tension and dynamics. Trends Cell Biol 22:527–535

    Article  CAS  PubMed  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604

    Article  CAS  PubMed  Google Scholar 

  • Hemler ME (1990) Vla proteins in the integrin family—structures, functions, and their role on leukocytes. Annu Rev Immunol 8:365–400

    Article  CAS  PubMed  Google Scholar 

  • Hertz H (1881) Ueber den kontakt elastischer koerper. J Reine Angew Math 92:156–171

    Google Scholar 

  • Hochmuth RM, Shao JY, Dai JW, Sheetz MP (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70:358–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez- Herrero J, Baro AM (2007) WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78

  • Ingber DE, Dike L, Hansen L, Karp S, Liley H, Maniotis A, Mcnamee H, Mooney D, Plopper G, Sims J, Wang N (1994) Cellular tensegrity—exploring how mechanical changes in the cytoskeleton regulate cell-growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol 150:173–224

    Article  CAS  PubMed  Google Scholar 

  • Janmey PA (1998) The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 78:763–781

    CAS  PubMed  Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kakaboura A, Fragouli M, Rahiotis C, Silikas N (2007) Evaluation of surface characteristics of dental composites using profilometry, scanning electron, atomic force microscopy and gloss-meter. J Mater Sci-Mater M 18:155–163

    Article  CAS  Google Scholar 

  • Keren K (2011) Cell motility: the integrating role of the plasma membrane. Eur Biophys J Biophy 40:1013–1027

    Article  CAS  Google Scholar 

  • Kreider T, Anthony RM, Urban JF, Gause WC (2007) Alternatively activated macrophages in helminth infections. Curr Opin Immunol 19:448–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee YJ, Patel D, Park S (2011) Local rheology of human neutrophils investigated using atomic force microscopy. Int J Biol Sci 7:102–111

    Article  PubMed Central  PubMed  Google Scholar 

  • Lekka M, Gil D, Pogoda K, Dulinska-Litewka J, Jach R, Gostek J, Klymenko O, Prauzner-Bechcicki S, Stachura Z, Wiltowska-Zuber J, Okon K, Laidler P (2012) Cancer cell detection in tissue sections using AFM. Arch Biochem Biophys 518:151–156

    Article  CAS  PubMed  Google Scholar 

  • Mackay JL, Kumar S (2013) Measuring the elastic properties of living cells with atomic force microscopy indentation. Methods Mol Biol 931:313–329

    Article  CAS  PubMed  Google Scholar 

  • Mahaffy RE, Park S, Gerde E, Kas J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86:1777–1793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94:849–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membrane Biol 179:79–102

    CAS  Google Scholar 

  • Mozhanova AA, Nurgazizov NI, Bukharaev AA(2003) Local elastic properties of biological materials studied by SFM. SPM-2003 In: Proceedings, Nizhni Novgorod, pp 266–267

  • Patel NR, Bole M, Chen C, Hardin CC, Kho AT, Mih J, Deng LH, Butler J, Tschumperlin D, Fredberg JJ, Krishnan R, Koziel H (2012) Cell elasticity determines macrophage function. PLoS One 7(9):e41024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radmacher M (1997) Measuring the elastic properties of biological samples with the AFM. Ieee Eng Med Biol 16:47–57

    Article  CAS  Google Scholar 

  • Radmacher M, Fritz M, Hansma PK (1995) Imaging soft samples with the atomic-force microscope—gelatin in water and propanol. Biophys J 69:264–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raman A, Trigueros S, Cartagena A, Stevenson APZ, Susilo M, Nauman E, Contera SA (2011) Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nat Nanotechnol 6:809–814

    Article  CAS  PubMed  Google Scholar 

  • Rotsch C, Braet F, Wisse E, Radmacher M (1997) AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol Int 21:685–696

    Article  CAS  PubMed  Google Scholar 

  • Segat D, Pucillo C, Marotta G, Perris R, Colombatti A (1994) Differential attachment of human neoplastic B-cells to purified extracellular-matrix molecules. Blood 83:1586–1594

    CAS  PubMed  Google Scholar 

  • Sheetz MP, Dai JW (1996) Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol 6:85–89

    Article  CAS  PubMed  Google Scholar 

  • Shroff SG, Saner DR, Lal R (1995) Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic-force microscopy. Am J Physiol 269:C286–C292

    CAS  PubMed  Google Scholar 

  • Sirghi L, Ponti J, Broggi F, Rossi F (2008) Probing elasticity and adhesion of live cells by atomic force microscopy indentation. Eur Biophys J 37:935–945

    Article  CAS  PubMed  Google Scholar 

  • Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  Google Scholar 

  • Spedden E, White JD, Naumova EN, Kaplan DL, Staii C (2012) Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy. Biophys J 103:868–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Svaldo-Lanero T, Krol S, Magrassi R, Diaspro A, Rolandi R, Gliozzi A, Cavalleri O (2007) Morphology, mechanical properties and viability of encapsulated cells. Ultramicroscopy 107:913–921

    Article  CAS  PubMed  Google Scholar 

  • Vesey DA, Cheung CWY, Cuttle L, Endre ZA, Gobe G, Johnson DW (2002) Interleukin-1 beta induces human proximal tubule cell injury, alpha-smooth muscle actin expression and fibronectin production. Kidney Int 62:31–40

    Article  CAS  PubMed  Google Scholar 

  • Weisenhorn AL, Hansma PK, Albrecht TR, Quate CF (1989) Forces in atomic force microscopy in air and water. Appl Phys Lett 54:2651–2653

    Article  Google Scholar 

  • Wu HW, Kuhn T, Moy VT (1998) Mechanical properties of l929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20:389–397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by CAPES/Nanobiotecnologia, Pró-equipamentos/PROCAD, Pronex/FAPEAL, CNPq and FINEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo J. S. Fonseca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, S.T., Agra, L.C., Santos, C.E.A. et al. Macrophage adhesion on fibronectin evokes an increase in the elastic property of the cell membrane and cytoskeleton: an atomic force microscopy study. Eur Biophys J 43, 573–579 (2014). https://doi.org/10.1007/s00249-014-0988-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0988-3

Keywords

Navigation