European Biophysics Journal

, Volume 43, Issue 10–11, pp 555–564 | Cite as

Modeling of RNA nanotubes using molecular dynamics simulation

  • S. R. BaduEmail author
  • R. Melnik
  • M. Paliy
  • S. Prabhakar
  • A. Sebetci
  • B. A. Shapiro


In this study, we construct novel RNA nanoclusters, RNA nanotubes made of several nanorings up to the size of 20 nm, utilizing the molecular dynamics simulation, and study their structural properties [i.e., the root mean square deviation, the radius of gyration and the radial distribution function (RDF)] in physiological solutions that can be used for drug delivery into the human body. The patterns of energy and temperature variations of the systems are also discussed. Furthermore, we study the concentration of ions around the tube as a function of time at a particular temperature. We have found that when the temperature increases, the number of ions increases within a certain distance of the tube. We report that the number of ions within this distance around the tubes decreases in quenched runs. This indicates that some ions evaporate with decrease in temperature, as has been observed in the case of the nanoring. RDF plots also demonstrate a similar trend with temperature, as was found in the case of RNA nanorings.


RNA nanocluster Nanotube Drug delivery Cancer therapy Bionanotechnology 



Authors are grateful to the NSERC and CRC Program for their support and Shared Hierarchical Academic Research Computing Network (SHARCNET: for providing the computational facilities. RM and AS acknowledge TUBITAK support. Finally, we would like to thank Dr. P. J. Douglas Roberts for helping with technical SHARCNET computational aspects.


  1. Afonin KA, Bindewald E, Yaghoubian AJ, Voss N, Jacovetty E, Shapiro BA, Jaeger L (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nano 5(9):676–682. doi: 10.1038/nnano.2010.160 CrossRefGoogle Scholar
  2. Afonin KA, Kireeva M, Grabow WW, Kashlev M, Jaeger L, Shapiro BA (2012) Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs. Nano Lett 12(10):5192–5195PubMedCrossRefPubMedCentralGoogle Scholar
  3. Badu SR, Melnik R, Paliy M, Prabhakar S, Sebetci A, Shapiro BA (2014) High performance computing studies of RNA nanotubes. In: Proceedings of IWBBIO-2014Google Scholar
  4. Bailey S, Wichitwechkarn J, Johnson D, Reilly BE, Anderson DL, Bodley JW (1990) Phylogenetic analysis and secondary structure of the bacillus subtilis bacteriophage RNA required for DNA packaging. J Biol Chem 265(36):22365–22370Google Scholar
  5. Binder K, Horbach J, Kob W, Paul W, Varnik F (2004) Molecular dynamics simulations. J Phys Condens Matter 16(5):S429CrossRefGoogle Scholar
  6. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the langevin piston method. J Chem Phys 103(11):4613–4621CrossRefGoogle Scholar
  7. Grabow WW, Zakrevsky P, Afonin KA, Chworos A, Shapiro BA, Jaeger L (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11(2):878–887PubMedCrossRefPubMedCentralGoogle Scholar
  8. Guo P, Zhang C, Chen C, Garver K, Trottier M (1998) Inter-RNA interaction of phage 29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2(1):149–155PubMedCrossRefGoogle Scholar
  9. Hansson T, Oostenbrink C, van Gunsteren W (2002) Molecular dynamics simulations. Curr Opin Struct Biol 12(2):190–196PubMedCrossRefGoogle Scholar
  10. Holbrook SR (2005) RNA structure: the long and the short of it. Curr Opin Struct Biol 15(3):302–308PubMedCrossRefGoogle Scholar
  11. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38PubMedCrossRefGoogle Scholar
  12. Ishikawa J, Furuta H, Ikawa Y (2013) RNA tectonics (tectoRNA) for RNA nanostructure design and its application in synthetic biology. Wiley Interdisciplinary Reviews: RNA 4(6):651664Google Scholar
  13. Jaeger L, Westhof E, Leontis NB (2001) TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucl Acids Res 29(2):455–463PubMedCrossRefPubMedCentralGoogle Scholar
  14. Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12(11):967–977PubMedCrossRefGoogle Scholar
  15. Kim T, Shapiro BA (2013) The role of salt concentration and magnesium binding in HIV-1 subtype-a and subtype-b kissing loop monomer structures 31(5):495–510Google Scholar
  16. Lee AJ, Crothers DM (1998) The solution structure of an RNA looploop complex: the ColE1 inverted loop sequence. Structure 6(8):993–1007. doi: 10.1016/S0969-2126(98)00101-4 PubMedCrossRefGoogle Scholar
  17. Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT (2012) Self-assembled RNA interference microsponges for efficient siRNA delivery N Mater 11(4):316–322PubMedCrossRefPubMedCentralGoogle Scholar
  18. Leontis NB, Lescoute A, Westhof E (2006) The building blocks and motifs of RNA architecture. Curr Opin Struct Biol 16(3):279–287PubMedCrossRefGoogle Scholar
  19. MacKerell BD, Bellott D, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wirkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616Google Scholar
  20. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101(5):4177–4189CrossRefGoogle Scholar
  21. Paliy M, Melnik R, Shapiro BA (2009) Molecular dynamics study of the RNA ring nanostructure: a phenomenon of self-stabilization. Phys Biol 6(4):046003Google Scholar
  22. Paliy M, Melnik R, Shapiro BA (2010) Coarse-graining RNA nanostructures for molecular dynamics simulations. Phys Biol 7(3):036001Google Scholar
  23. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kal L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802PubMedCrossRefPubMedCentralGoogle Scholar
  24. Shu D, Shu Y, Haque F, Abdelmawla S, Guo P (2011) Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nano 6(10):658–667CrossRefGoogle Scholar
  25. Shu Y, Cinier M, Fox SR, Ben-Johnathan N, Guo P (2011) Assembly of therapeutic pRNA-siRNA nanoparticles using bipartite approach. Mol Ther 19(7):1304–1311PubMedCrossRefPubMedCentralGoogle Scholar
  26. Tomizawa JI (1984) Control of cole 1 plasmid replication: the process of binding of RNA I to the primer transcript. Cell 38(3):861–870Google Scholar
  27. Tomizawa JI (1986) Control of ColE1 plasmid replication: binding of RNA I to RNA II and inhibition of primer formation. Cell 47(1):89–97PubMedCrossRefGoogle Scholar
  28. Vieregg J, Cheng W, Bustamante C, Tinoco I (2007) Measurement of the effect of monovalent cations on RNA hairpin stability. J Am Chem Soc 129(48):14966–14973Google Scholar
  29. Yano J, Hirabayashi K, Nakagawa SI, Yamaguchi T, Nogawa M, Kashimori I, Naito H, Kitagawa H, Ishiyama K, Ohgi T, Irimura T (2004) Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res 10(22):7721–7726Google Scholar
  30. Yingling YG, Shapiro BA (2007) Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett 7(8):2328–2334PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2014

Authors and Affiliations

  • S. R. Badu
    • 1
    Email author
  • R. Melnik
    • 1
  • M. Paliy
    • 2
  • S. Prabhakar
    • 1
  • A. Sebetci
    • 3
  • B. A. Shapiro
    • 4
  1. 1.MS2Discovery Interdisciplinary Research Institute, M2Net LabWilfrid Laurier UniversityWaterlooCanada
  2. 2.Department of Mechanical and Materials Engineering, Department of Chemistry, Surface Science WesternUniversity of Western OntarioLondonCanada
  3. 3.Department of Mechanical EngineeringMevlana UniversityKonyaTurkey
  4. 4.Center for Cancer Research Nanobiology ProgramNational Cancer InstituteFrederickUSA

Personalised recommendations