European Biophysics Journal

, Volume 43, Issue 6–7, pp 277–286 | Cite as

Evidence for electro-induced membrane defects assessed by lateral mobility measurement of a GPi anchored protein

  • Jean Michel Escoffre
  • Marie Hubert
  • Justin Teissié
  • Marie Pierre Rols
  • Cyril FavardEmail author
Original Paper


Electrotransfer is a method by which molecules can be introduced into living cells via plasma membrane electropermeabilization. Here, we show that electropermeabilization affects the lateral mobility of Rae-1, a GPi anchored protein. Our results suggest that 10–20 % of the membrane surface is occupied by defects or pores and that these structures propagate rapidly (\(<\)1 min) over the cell surface. Electrotransfer of plasmid DNA (pDNA) also affects the lateral mobility of Rae-1. Furthermore, we clearly show that, once inserted into the plasma membrane, pDNA is completely immobile and excludes Rae-1; this indicates that the pDNA molecules are tightly packed together to form aggregates occupying at least the outer leaflet of the plasma membrane.


Electropermeabilization GPi anchored protein pDNA FRAP Lateral mobility Pores 



This work has been performed in collaboration with the “Toulouse Réseau Imagerie” core IPBS facility (Genotoul, Toulouse, France), which is supported by the Association Recherche Cancer, Region Midi Pyrenees, the European union (FEDER) and Grand Toulouse cluster. This research project was conducted in the scope of EBAM European Associated Laboratory and of the COST Action TD1104. JM Escoffre was the recipient of an allocation de recherche du Ministère de l’Enseignement Supérieur et de la Recherche. The authors are grateful to Dr. M. Golzio and Dr. E. Bellard for critical reading of the manuscript and Dr. T. Melvin for English rewriting. C. Favard is a membership of CNRS consortii GDR2588 “MIV” and GDR3070 “CellTiss”.


  1. Abidor IG, Li LH, Hui SW (1994) Studies of cell pellets: II. Osmotic properties, electroporation, and related phenomena: membrane interactions. Biophys J 67(1):427–435PubMedCentralPubMedCrossRefGoogle Scholar
  2. Axelrod D, Koppel D, Schlessinger J, Elson E, Webb W (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16(9):1055–1069PubMedCentralPubMedCrossRefGoogle Scholar
  3. Benz R, Beckers F, Zimmermann U (1979) Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J Membr Biol 48(2):181–204PubMedCrossRefGoogle Scholar
  4. Chang D, Chassy B, Saunders J, Sowers A (1992) Guide to electroporation and electrofusion. San DiegoGoogle Scholar
  5. Chopinet L, Roduit C, Rols MP, Dague E (2013) Destabilization induced by electropermeabilization analyzed by atomic force microscopy. Biochim Biophys Acta 1828(9):2223–2229PubMedCrossRefGoogle Scholar
  6. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase i trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26(36):5896–5903PubMedCentralPubMedGoogle Scholar
  7. Escoffre JM, Rols MP (2012) Electrochemotherapy: progress and prospects. Curr Pharm Des 18(23):3406–3415Google Scholar
  8. Escoffre JM, Portet T, Favard C, Teissié J, Dean DS, Rols MP (2011) Electromediated formation of DNA complexes with cell membranes and its consequences for gene delivery. Biochim Biophys Acta-Biomembr 1808(6):1538–1543CrossRefGoogle Scholar
  9. Gabriel B, Teissié J (1997) Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys J 73(5):2630–2637PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gabriel B, Teissié J (1999) Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse. Biophys J 76(4):2158–2165PubMedCentralPubMedCrossRefGoogle Scholar
  11. Golzio M, Mora MP, Raynaud C, Delteil C, Teissié J, Rols MP (1998) Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys J 74(6):3015–3022PubMedCentralPubMedCrossRefGoogle Scholar
  12. Golzio M, Teissié J, Rols MP (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA 99(3):1292–1297PubMedCentralPubMedCrossRefGoogle Scholar
  13. Griese T, Kakorin S, Neumann E (2002) Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields. Phys Chem Chem Phys 4(7):1217–1227CrossRefGoogle Scholar
  14. Hibino M, Itoh H, Kinosita K (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J 64(6):1789–1800PubMedCentralPubMedCrossRefGoogle Scholar
  15. Kakorin S, Stoylov S, Neumann E (1996) Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles. Biophys Chem 58(1–2):109–116PubMedCrossRefGoogle Scholar
  16. Kinosita K, Tsong TY (1979) Voltage-induced conductance in human erythrocyte membranes. Biochim Biophys Acta 554(2):479–497PubMedCrossRefGoogle Scholar
  17. Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92(2):404–417PubMedCentralPubMedCrossRefGoogle Scholar
  18. Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236(1):27–36PubMedCrossRefGoogle Scholar
  19. Low L, Mander A, McCann K, Dearnaley D, Tjelle T, Mathiesen I, Stevenson F, Ottensmeier CH (2009) DNA Vaccination with Electroporation Induces Increased Antibody Responses in Patients with Prostate Cancer. Hum Gene Ther 20(11):1269–1278PubMedCrossRefGoogle Scholar
  20. Matthews C, Favard C (2007) Theory, principles and applications of fluorescent technologies in cellular biology and cancer research. Bull Cancer (French) 94(1):115–125Google Scholar
  21. Mazères S, Sel D, Golzio M, Pucihar G, Tamzali Y, Miklavcic D, Teissié J (2009) Non invasive contact electrodes for in vivo localized cutaneous electropulsation and associated drug and nucleic acid delivery. J Control Release 134(2):125–131PubMedCrossRefGoogle Scholar
  22. Mir L, Banoun H, Paoletti C (1988) Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization—direct access to the cytosol. Exp Cell Res 175(1):15–25PubMedCrossRefGoogle Scholar
  23. Mir LM, Gehl J, Sersa G, Collins CG, Garbay JR, Billard V, Geertsen PF, Rudolf Z, O’Sullivan GC, Marty M (2006) Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the Cliniporator (TM) by means of invasive or non-invasive electrodes. EJC Suppl 4(11):14–25CrossRefGoogle Scholar
  24. Neumann E, Sowers A, Jordan C (1989) Electroporation and electrofusion in cell biology, Plenum, New YorkGoogle Scholar
  25. Nomura M, Zou Z, Joh T, Takihara Y, Matsuda Y, Shimada K (1996) Genomic structures and characterization of rae1 family members encoding gpi-anchored cell surface proteins and expressed predominantly in embryonic mouse brain. J Biochem 120(5):987–995PubMedCrossRefGoogle Scholar
  26. Parsegian V (1969) Energy of an ion crossing of a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature 221:844–846PubMedCrossRefGoogle Scholar
  27. Pavlin M, Kanduser M, Rebersek M, Pucihar G, Hart FX, Magjarevic R, Miklavcic D (2005) Effect of cell electroporation on the conductivity of a cell suspension. Biophys J 88(6):4378–4390PubMedCentralPubMedCrossRefGoogle Scholar
  28. Pavlin M, Leben V, Miklavcic D (2007) Electroporation in dense cell suspension-theoretical and experimental analysis of ion diffusion and cell permeabilization. Biochim Biophys Acta 1770(1):12–23PubMedCrossRefGoogle Scholar
  29. Phez E, Faurie C, Golzio M, Teissié J, Rols M (2005) New insights in the visualization of membrane permeabilization and DNA/membrane interaction of cells submitted to electric pulses. Biochim Biophys Acta Gen Subj 1724(3):248–254CrossRefGoogle Scholar
  30. Portet T, Favard C, Teissié J, Dean DS, Rols MP (2011) Insights into the mechanisms of electromediated gene delivery and application to the loading of giant vesicles with negatively charged macromolecules. Soft Matter 7(8):3872–3881CrossRefGoogle Scholar
  31. Prausnitz MR, Milano CD, Gimm JA, Langer R, Weaver JC (1994) Quantitative study of molecular transport due to electroporation: uptake of bovine serum albumin by erythrocyte ghosts. Biophys J 66(5):1522–1530PubMedCentralPubMedCrossRefGoogle Scholar
  32. Prausnitz MR, Corbett JD, Gimm JA, Golan DE, Langer R, Weaver JC (1995) Millisecond measurement of transport during and after an electroporation pulse. Biophys J 68(5):1864–1870PubMedCentralPubMedCrossRefGoogle Scholar
  33. Pucihar G, Kotnik T, Miklavich D, Teissié J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95(6):2837–2848PubMedCentralPubMedCrossRefGoogle Scholar
  34. Rols MP, Teissié J (1998) Electropermeabilization of mammalian cells to macromolecules: Control by pulse duration. Biophys J 75(3):1415–1423PubMedCentralPubMedCrossRefGoogle Scholar
  35. Romeo S, Wu YH, Levine ZA, Gundersen MA (1828) Vernier PT (2013) Water influx and cell swelling after nanosecond electropermeabilization. Biochim Biophys Acta 8:1715–1722Google Scholar
  36. Rosazza C, Escoffre JM, Zumbusch A, Rols MP (2011) The actin cytoskeleton has an active role in the electrotransfer of plasmid dna in mammalian cells. Mol Ther 19(5):913–921PubMedCentralPubMedCrossRefGoogle Scholar
  37. Rosazza C, Phez E, Escoffre JM, Cézanne L, Zumbusch A, Rols MP (2012) Cholesterol implications in plasmid dna electrotransfer: evidence for the involvement of endocytotic pathways. Int J Pharm 423(1):134–143PubMedCrossRefGoogle Scholar
  38. Saxton M (1982) Lateral diffusion in an archipelago—effects of impermeable patches on diffusion in a cell-membrane. Biophys J 39(2):165–173PubMedCentralPubMedCrossRefGoogle Scholar
  39. Saxton M (1987) Lateral diffusion in an archipelago—the effect of mobile obstacles. Biophys J 52(6):989–997PubMedCentralPubMedCrossRefGoogle Scholar
  40. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88(6):4045–4053PubMedCentralPubMedCrossRefGoogle Scholar
  41. Teissié J, Golzio M, Rols M (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta Gen Subj 1724(3):270–280CrossRefGoogle Scholar
  42. Tekle E, Astumian RD, Chock PB (1994) Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci USA 91(24):11512–11516PubMedCentralPubMedCrossRefGoogle Scholar
  43. Tekle E, Astumian R, Friauf W, Chock P (2001) Asymmetric pore distribution and loss of membrane lipid in electroporated DOPC vesicles. Biophys J 81(2):960–968PubMedCentralPubMedCrossRefGoogle Scholar
  44. Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10PubMedCentralPubMedCrossRefGoogle Scholar
  45. Weaver J (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435PubMedGoogle Scholar
  46. Weiland O, AhlTn G, Diepolder H, Jung MC, Levander S, Fons M, Mathiesen I, Sardesai NY, Vahlne A, Frelin L, SSllberg M (2013) Therapeutic dna vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol Ther 21(9):1796–1805PubMedCentralPubMedCrossRefGoogle Scholar
  47. Yguerabide J, Schmidt JA, Yguerabide EE (1982) Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys J 40(1):69–75PubMedCentralPubMedCrossRefGoogle Scholar
  48. Zou Z, Nomura M, Takihara Y, Yasunaga T, Shimada K (1996) Isolation and characterization of retinoic acid-inducible cDNA clones in F9 cells: a novel cDNA family encodes cell surface proteins sharing partial homology with MHC class I molecules. J Biochem 119(2):319–328PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2014

Authors and Affiliations

  • Jean Michel Escoffre
    • 1
    • 2
  • Marie Hubert
    • 1
  • Justin Teissié
    • 1
  • Marie Pierre Rols
    • 1
  • Cyril Favard
    • 3
    • 4
    Email author
  1. 1.Institut de Pharmacologie et de Biologie StructuraleToulouse CedexFrance
  2. 2.Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
  3. 3.Institut FresnelMarseille CedexFrance
  4. 4.Centre d’ études d’agents Pathogènes et Biotechnologies pour la Santé CPBS, UMR 5236Montpellier Cedex 5France

Personalised recommendations