Skip to main content
Log in

Lysozyme binding to tethered bilayer lipid membranes prepared by rapid solvent exchange and vesicle fusion methods

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Tethered bilayer lipid membranes (tBLMs) are important tools for studying protein–lipid interactions. The widely used methodology for the preparation of these membranes is the fusion of phospholipid vesicles from an aqueous medium onto an anchored phospholipid layer. The preparation of phospholipid vesicles is a long and tedious procedure. There is another simple method, rapid solvent exchange, for preparing lipid membranes. However, there is a lack of information on the effects of the preparation method of tBLMs on their interactions with proteins. Therefore, we present in this paper a comparative study on the binding of lysozyme onto tBLMs prepared by the abovementioned methods. The prepared tBLMs have either zwitterionic or anionic characteristics. The results show that lysozyme binding onto the prepared tBLMs is unaffected by the preparation method of the tBLMs, suggesting that the tedious fusion method might be replaced by the simple rapid solvent exchange method without altering the level of protein–lipid interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al Kayal T, Nappini S, Russo E, Berti D, Bucciantini M, Stefani M, Baglioni P (2012) Lysozyme interaction with negatively charged lipid bilayers: protein aggregation and membrane fusion. Soft Matter 8:4524–4534

    Article  CAS  Google Scholar 

  • Atanasov A, Knorr N, Duran RS, Ingebrandt S, Offenhausser A, Knoll W, Koper I (2005) Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophys J 89:1780–1788

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bergers JJ, Vingerhoeds MH, van Bloois L, Herron JN, Janssen LH, Fischer MJ, Crommelin DJ (1993) The role of protein charge in protein–lipid interactions. pH-dependent changes of the electrophoretic mobility of liposomes through adsorption of water-soluble, globular proteins. Biochemistry 32:4641–4649

    Article  PubMed  CAS  Google Scholar 

  • Biesheuvel PM, van der Veen M, Norde W (2005) A modified Poisson–Boltzmann model including charge regulation for the adsorption of ionizable polyelectrolytes to charged interfaces, applied to lysozyme adsorption on silica. J Phys Chem B 109:4172–4180

    Article  PubMed  CAS  Google Scholar 

  • Blake CCF, Koening DF, Mair GA, North ACT, Phillips DC, Sarma VR (1965) Structure of hen egg-white lysozyme: a three-dimensional fourier synthesis at 2 Å resolution. Nature 206:757–761

    Article  PubMed  CAS  Google Scholar 

  • Castellana E, Cremer P (2006) Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep 61:429–444

    Article  CAS  Google Scholar 

  • Cornell BA, Braach-Maksvytis VLB, King LG, Osman PDJ, Raguse B, Wieczorek L, Pace RJ (1997) Biosensor that uses ion-channel switches. Nature 387:580–583

    Article  PubMed  CAS  Google Scholar 

  • Dorvel BR, Keizer HM, Fine D, Vuorinen J, Dodabalapur A, Duran RS (2007) Formation of tethered bilayer lipid membranes on gold surfaces: QCM-Z and AFM study. Langmuir 23:7344–7355

    Article  PubMed  CAS  Google Scholar 

  • Himmelhaus M, Eisert F, Buck M, Grunze M (2000) Self-assembly of n-alkanethiol monolayers. A study by IR–visible sum frequency spectroscopy (SFG). J Phys Chem B 104:576–584

    Article  CAS  Google Scholar 

  • Hook F, Voros J, Rodahl M, Kurrat R, Boni P, Ramsden JJ, Textor M, Spencer ND, Tengvall P, Gold J, Kasemo B (2002) A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide light mode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf B 24:155–170

    Article  CAS  Google Scholar 

  • Jackman JA, Knoll W, Cho N-J (2012) Biotechnology applications of tethered lipid bilayer membranes. Materials 5:2637–2657

    Article  CAS  Google Scholar 

  • Keller C, Kasemo B (1998) Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J 75:1397–1402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Knoll W, Frank CW, Heibel C, Naumann R, Offenhausser A, Ruhe J, Schmidt EK, Shen WW, Sinner A (2000) Functional tethered lipid bilayers. Rev Mol Biotechnol 74:137–158

    Article  CAS  Google Scholar 

  • Krigbaum WR, Kuegler FR (1970) Molecular conformation of egg-white lysozyme and bovine α-lactalbumin in solution. Biochemistry 9:1216–1223

    Article  PubMed  CAS  Google Scholar 

  • Lang H, Duschl C, Vogel H (1994) A new class of thiolipid for the attachment of lipid bilayers on gold surfaces. Langmuir 10:197–210

    Article  CAS  Google Scholar 

  • Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16:307–321

    Article  PubMed  CAS  Google Scholar 

  • McGillivray DJ, Valincius G, Vanderah DJ, Febo-Ayala W, Woodward JT, Heinrich F, Kasianowicz JJ, Losche M (2007) Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes. Biointerphases 2:21–33

    Article  PubMed  CAS  Google Scholar 

  • Mingeot-Leclercq M-P, Deleu M, Brasseur R, Dufrene YF (2008) Atomic force microscopy of supported lipid bilayers. Nat Protoc 3:1654–1659

    Article  PubMed  Google Scholar 

  • Montal M, Meuller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. PNAS 69:3561–3566

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mozsolits H, Wirth H-J, Werkmeister J, Aguilar M-I (2001) Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochim Biophys Acta 1512:64–76

    Article  PubMed  CAS  Google Scholar 

  • Mueller P, Rudin DO, Iien HTT, Wescott WC (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–980

    Article  PubMed  CAS  Google Scholar 

  • Naumann CA, Prucker O, Lehmann T, Ruhe J, Knoll W, Frank CW (2002) The polymer-supported phospholipid bilayer: tethering as a new approach to substrate-membrane stabilization. Biomacromolecules 3:27–35

    Article  PubMed  CAS  Google Scholar 

  • Onaizi SA, He L, Middelberg APJ (2009a) Proteolytic cleaning of a surface-bound rubisco protein stain. Chem Eng Sci 64:3868–3878

    Article  CAS  Google Scholar 

  • Onaizi SA, He L, Middelberg APJ (2009b) Rapid screening of surfactant and biosurfactant surface cleaning performance. Colloids Surf B 72:68–74

    Article  CAS  Google Scholar 

  • Onaizi SA, He L, Middelberg APJ (2010) The construction, fouling and enzymatic cleaning of a textile dye surface. J Colloid Interface Sci 351:203–209

    Article  PubMed  CAS  Google Scholar 

  • Papo N, Shai Y (2003) Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry 42:458–466

    Article  PubMed  CAS  Google Scholar 

  • Pethig R (1979) Dielectric and electronic properties of biological materials. Wiley, New York

    Google Scholar 

  • Plant AL (1993) Self-assembled phospholipid/alkanethiol biomimetic bilayers on gold. Langmuir 9:2764–2767

    Article  CAS  Google Scholar 

  • Plant AL, Gueguetchkeri M, Yap W (1994) Supported phospholipid/alkanethiol biomimetic membranes: insulating properties. Biophys J 67:1126–1133

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48

    Article  PubMed  CAS  Google Scholar 

  • Schaaf P, Voegel J-C, Senger B (2000) From random sequential adsorption to ballistic deposition: a general view of irreversible deposition processes. J Phys Chem B 104:2204–2214

    Article  CAS  Google Scholar 

  • Schiller SM, Naumann R, Lovejoy K, Kunz H, Knoll W (2003) Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces. Angew Chem Int Ed 42:208–211

    Article  CAS  Google Scholar 

  • Tamm LK, McConnell HM (1985) Supported phospholipid bilayers. Biophys J 47:105–113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437:656–663

    Article  PubMed  CAS  Google Scholar 

  • Terrettaz S, Stora T, Duschl C, Vogel H (1993) Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance. Langmuir 9:1361–1369

    Article  CAS  Google Scholar 

  • van Tassel PR, Viot P, Tarjus G, Ramsden JJ, Talbot J (2000) Enhanced saturation coverages in adsorption–desorption processes. J Chem Phys 112:1483–1488

    Article  Google Scholar 

  • Vockenroth IK, Ohm C, Robertson JWF, McGillivray DJ, Losche M, Koper I (2008) Stable insulating tethered bilayer lipid membranes. Biointerphases 3:FA68–FA73

    Article  PubMed  CAS  Google Scholar 

  • Vockenroth IK, Rossi C, Shah MR, Koper I (2009) Formation of tethered bilayer lipid membranes probed by various surface sensitive techniques. Biointerphases 4:19–26

    Article  PubMed  CAS  Google Scholar 

  • Voros J (2004) The density and refractive index of adsorbing protein layers. Biophys J 87:553–561

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wagner M, Tamm L (2000) Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane–polyethyleneglycol–lipid as a cushion and covalent linker. Biophys J 79:1400–1414

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wetter LR, Deutsch HF (1951) Immunological studies of egg white proteins: IV. Immunochemical and physical studies of lysozyme. J Biol Chem 192:237–242

    PubMed  CAS  Google Scholar 

  • Williams LM, Evans SD, Flynn TM, Marsh A, Knowles PF, Bushby RJ, Boden N (1997) Kinetics of the unrolling of small unilamellar phospholipid vesicles onto self-assembled monolayers. Langmuir 13:751–757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagheer A. Onaizi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onaizi, S.A., Nasser, M.S. & Twaiq, F. Lysozyme binding to tethered bilayer lipid membranes prepared by rapid solvent exchange and vesicle fusion methods. Eur Biophys J 43, 191–198 (2014). https://doi.org/10.1007/s00249-014-0955-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0955-z

Keywords

Navigation