European Biophysics Journal

, Volume 42, Issue 11–12, pp 851–855 | Cite as

Dynamics of adhesion molecule domains on neutrophil membranes: surfing the dynamic cell topography

  • Thomas R. Gaborski
  • Michael N. Sealander
  • Richard E. Waugh
  • James L. McGrath
Biophysics Letter


Lateral organization and mobility of adhesion molecules play a significant role in determining the avidity with which cells can bind to target cells or surfaces. Recently, we have shown that the lateral mobility of the principal adhesion molecules on neutrophils is lower for rolling associated adhesion molecules (RAAMs: L-selectin and PSGL-1) than for β2 integrins (LFA-1 and Mac-1). Here we report that all four adhesion molecules exhibit distinct punctate distributions that are mobile on the cell surface. Using uniform illumination image correlation microscopy, we measure the lateral mobility of these topologically distinct domains. For all four molecules, we find that diffusion coefficients calculated from domain mobility agree with measurements we made previously using fluorescence recovery after photobleaching. This agreement indicates that the transport of receptors on the surface of the resting neutrophil is dominated by the lateral movement of domains rather than individual molecules. The diffusion of pre-assembled integrin domains to zones of neutrophil/endothelial contact may provide a mechanism to facilitate high avidity adhesion during the earliest stages of firm arrest.


Luekocytes Inflammation Adhesion cascade Fluorescence microscopy 



This work was supported by funding from the National Institutes of Health under program project grant no. PO1HL018208.

Supplementary material

249_2013_931_MOESM1_ESM.doc (285 kb)
Supplementary material 1 (DOC 285 kb) (964 kb)
Supplementary material 2 (MOV 964 kb)


  1. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774PubMedCrossRefGoogle Scholar
  2. Bell G (1978) Models for the specific adhesion of cells to cells. Science 200:618–627PubMedCrossRefGoogle Scholar
  3. Bruehl RE, Springer TA, Bainton DF (1996) Quantitation of L-selectin distribution on human leukocyte microvilli by immunogold labeling and electron microscopy. J Histochem Cytochem 44:835–844PubMedCrossRefGoogle Scholar
  4. Cairo C, Mirchev R, Golan D (2006) Cytoskeletal regulation couples LFA-1 conformational changes to receptor lateral mobility and clustering. Immunity 25:297–308PubMedCrossRefGoogle Scholar
  5. Carman C, Springer T (2003) Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol 15:547–556PubMedCrossRefGoogle Scholar
  6. Ehringer WD, Edwards MJ, Miller FN (1996) Mechanisms of alpha-thrombin, histamine, and bradykinin induced endothelial permeability. J Cell Physiol 167:562–569. doi: 10.1002/(SICI)1097-4652(199606)167:3<562:AID-JCP20>3.0.CO;2-4 PubMedCrossRefGoogle Scholar
  7. Elson EL (2011) Fluorescence correlation spectroscopy: past, present, future. Biophys J 101:2855–2870. doi: 10.1016/j.bpj.2011.11.012 PubMedCrossRefGoogle Scholar
  8. Gaborski TR, Clark A, Waugh RE, McGrath JL (2008) Membrane mobility of beta2 integrins and rolling associated adhesion molecules in resting neutrophils. Biophys J 95:4934–4947. doi: 10.1529/biophysj.108.132886 PubMedCrossRefGoogle Scholar
  9. Gaborski TR, Sealander MN, Ehrenberg M et al (2010) Image correlation microscopy for uniform illumination. J Microsc 237:39–50. doi: 10.1111/j.1365-2818.2009.03300.x PubMedCrossRefGoogle Scholar
  10. Hocdé SA, Hyrien O, Waugh RE (2009a) Cell adhesion molecule distribution relative to neutrophil surface topography assessed by TIRFM. Biophys J 97:379–387. doi: 10.1016/j.bpj.2009.04.035 PubMedCrossRefGoogle Scholar
  11. Hocdé SA, Hyrien O, Waugh RE (2009b) Molecular accessibility in relation to cell surface topography and compression against a flat substrate. Biophys J 97:369–378. doi: 10.1016/j.bpj.2009.04.034 PubMedCrossRefGoogle Scholar
  12. Majstoravich S, Zhang J, Nicholson-Dykstra S et al (2004) Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology. Blood 104:1396–1403PubMedCrossRefGoogle Scholar
  13. Moore KL, Patel KD, Bruehl RE et al (1995) P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol 128:661–671PubMedCrossRefGoogle Scholar
  14. Petersen N, Hoddelius P, Wiseman P et al (1993) Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J 65:1135–1146PubMedCrossRefGoogle Scholar
  15. Srivastava M, Petersen N (1998) Diffusion of transferrin receptor clusters. Biophys Chem 75:201–211PubMedCrossRefGoogle Scholar
  16. Sundd P, Pospieszalska MK, Ley K (2013) Neutrophil rolling at high shear: flattening, catch bond behavior, tethers and slings. Mol Immunol 55:59–69. doi: 10.1016/j.molimm.2012.10.025 PubMedCrossRefGoogle Scholar
  17. Toplak T, Pandzic E, Chen L et al (2012) STICCS reveals matrix-dependent adhesion slipping and gripping in migrating cells. Biophys J 103:1672–1682. doi: 10.1016/j.bpj.2012.08.060 PubMedCrossRefGoogle Scholar
  18. von Andrian U, Chambers J, McEvoy L et al (1991) Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proc Natl Acad Sci USA 88:7538–7542CrossRefGoogle Scholar
  19. Welf ES, Naik UP, Ogunnaike BA (2012) A spatial model for integrin clustering as a result of feedback between integrin activation and integrin binding. Biophys J 103:1379–1389. doi: 10.1016/j.bpj.2012.08.021 PubMedCrossRefGoogle Scholar
  20. Wiseman PW, Squier JA, Ellisman MH, Wilson KR (2000) Two-photon image correlation spectroscopy and image cross-correlation spectroscopy. J Microsc 200:14–25PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2013

Authors and Affiliations

  • Thomas R. Gaborski
    • 1
    • 2
  • Michael N. Sealander
    • 3
  • Richard E. Waugh
    • 1
  • James L. McGrath
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of RochesterRochesterUSA
  2. 2.Department of Biomedical EngineeringRochester Institute of TechnologyRochesterUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of RochesterRochesterUSA

Personalised recommendations