Skip to main content

Advertisement

Log in

Interaction of a synthetic antimicrobial peptide with model membrane by fluorescence spectroscopy

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Static and time-resolved fluorescence of tryptophan and ortho-aminobenzoic acid was used to investigate the interaction of the synthetic antimicrobial peptide L1A (IDGLKAIWKKVADLLKNT-NH2) with POPC and POPC:POPG. N-acetylated (Ac-L1A) and N-terminus covalently bonded ortho-aminobenzoic acid (Abz-L1A-W8V) were also used. Static fluorescence and quenching by acrylamide showed that the peptides adsorption to the lipid bilayers was accompanied by spectral blue shift and by a decrease in fluorescence quenching, indicating that the peptides moved to a less polar environment probably buried in the lipidic phase of the vesicles. These results also suggest that the loss of the N-terminus charge allowed deeper fluorophore insertion in the bilayer. Despite the local character of spectroscopic information, conclusions can be drawn about the peptides as a whole. The dynamic behaviors of the peptides are such that the mean intensity lifetimes, the long correlation time and the residual anisotropy at long times increased when the peptides adsorb in lipid vesicles, being larger in anionic vesicles. From the steady-state increase in fluorescence intensity and anisotropy, we observed that the partition coefficient of peptides L1A and its Abz analog in both types of vesicles are higher than the acetylated analog; moreover, the affinity to the anionic vesicle is higher than to the zwitterionic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida PF, Pokorny A (2009) Mechanism of antimicrobial, cytolytic and cell-penetrating peptides: from kinetics to thermodynamics. Biochemistry 48:8083–8093

    Article  PubMed  CAS  Google Scholar 

  • Arbuzova A, Schwarz G (1999) Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis. Biochim Biophys Acta 1420:139–152

    Article  PubMed  CAS  Google Scholar 

  • Brockman H (1994) Dipole potential of lipid-membranes. Chem Phys Lipids 73:57–79

    Article  PubMed  CAS  Google Scholar 

  • Castanho MARB, Prieto MJE (1992) Fluorescence study of the macrolide pentaene antibiotic filipin in aqueous solution and in a model system of membranes. Eur J Biochem 207:125–134

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Mant CT, Farmer SW, Hancock REW, Vasil ML, Hodges RS (2005) Rational design of alpha-helical antimicrobial peptide with enhanced activity and specificity/therapeutic index. J Biol Chem 280:12316–12329

    Article  PubMed  CAS  Google Scholar 

  • Clayton AHA, Sawyer WH (1999) Tryptophan rotamer distributions in amphipathic peptides at a lipid surface. Biophys J 76:3235–3242

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A, Prieto M (1995) Self-association of the polyene antibiotic nistatin in dipalmitoylphosphatidylcholine vesicles: a time-resolved fluorescence study. Biophys J 69:2541–2557

    Article  PubMed  CAS  Google Scholar 

  • Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462:71–87

    Article  PubMed  CAS  Google Scholar 

  • Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 501:146–150

    Article  PubMed  CAS  Google Scholar 

  • dos Santos Cabrera MP, Costa STB, Souza BM, Palma MS, Ruggiero JR, Ruggiero Neto J (2008) Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1. Eur Biophys J 37:879–891

    Article  PubMed  Google Scholar 

  • dos Santos Cabrera MP, Alvares DS, Leite NB, Souza BM, Palma MS, Riske KA, Ruggiero Neto J (2011) New insight into the mechanism of action of wasp mastoparan peptides: lytic activity and clustering observed with giant vesicles. Langmuir 27:10805–10813

    Article  Google Scholar 

  • Engelborghs Y (2001) The analysis of time resolved protein fluorescence in multi-tryptophan proteins. Spectrochim Acta 57:2255–2270

    Article  CAS  Google Scholar 

  • Epand RM, Epand RF (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta 1788:289–294

    Article  PubMed  CAS  Google Scholar 

  • Ferre R, Melo MN, Correia AD, Feliu L, Bardaji E, Planas M, Castanho M (2009) Synergistic effects of the membrane actions of ceropin-melittin antimicrobial hybrid peptide BP100. Biophysical J 96:1815–1827

    Article  CAS  Google Scholar 

  • Gazzara JA, Philips MC, Lund-Katz S, Palgunachari MN, Segrest JP, Anantharamaiah GM, Snow JS (1997) Interaction of class A amphipathic helical peptides with phospholipid unilamellar vesicles. J Lipid Res 38:2134–2146

    PubMed  CAS  Google Scholar 

  • Goldman C, Pascutti PG, Piquini P, Ito AS (1995) On the contribution of electron transfer reaction to the quenching of tryptophan fluorescence. J Chem Phys 103:10614–10620

    Article  CAS  Google Scholar 

  • Haldar S, Chaudhuri A, Gu H, Koeppe RE, Kombrabail M, Krishnamoorthy G, Chattopadhya A (2012) Membrane Organization and Dynamics of “Inner Pair” and “Outer Pair” Tryptophan Residues in Gramicidin Channels. J Phys Chem B 116:11056–11064

    Article  PubMed  CAS  Google Scholar 

  • Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Ito AS, Castrucci AML, Hruby VJ, Hadley ME, Krajcarski DT, Szabo AG (1993) Structure activity correlations of melanotropic peptides in model lipids by tryptophan fluorescence studies. Biochemistry 32:12264–12272

    Article  PubMed  CAS  Google Scholar 

  • Ito AS, Turchiello RF, Hirata IY, Cezari MH, Meldal M, Juliano L (1998) Fluorescent properties of amino acids labeled with orthoaminobenzoic. Biospectroscopy 4:395–402

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, Hodges RS (2008) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers (Pept Sci) 90:369–383

    Article  CAS  Google Scholar 

  • Kawato S, Kinosita K Jr, Ikegami A (1978) Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studied by nanosecond fluorescence techniques. Biochemistry 17:5026–5031

    Article  PubMed  CAS  Google Scholar 

  • Ladokhin AS (2001) On the interpretation of decay-associated fluorescence spectra in proteins. Biopolymers Cell 17:221–224

    Article  CAS  Google Scholar 

  • Ladokhin AS, Jayasinghe S, White SH (2000) How to measure and analyze the tryptophan fluorescence in membrane properly and why bother. Anal Biochem 285:235–245

    Article  PubMed  CAS  Google Scholar 

  • Leite NB, da Costa LC, Alvares DS, Dos Santos Cabrera MP, De Souza BM, Palma MS, Ruggiero Neto J (2010) The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy. Amino Acids 40:91–100

    Article  PubMed  Google Scholar 

  • Loura LMS, Ramalho JP (2007) Location and dynamics of acyl chain NBD-labeled phosphatidylcholine (NBD-PC) in DPPC bilayers. A molecular dynamics and time-resolved fluorescence anisotropy study. Biochim Biophys Acta 1768:467–478

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788:1687–1692

    Article  PubMed  CAS  Google Scholar 

  • Moncrieffe MC, Juranic N, Kemple MD, Potter JD, Macura S, Prendergast FG (2000) Structure-fluorescence correlations in a single tryptophan mutant of carp parvalbumin: solution structure, backbone and side-chain dynamics. J Mol Biol 297:147–163

    Article  PubMed  CAS  Google Scholar 

  • Pan C-P, Barkley MD (2004) Conformational effects on tryptophan fluorescence in cyclic hexapeptides. Biophys J 86:3828–3835

    Article  PubMed  CAS  Google Scholar 

  • Raghuramanan H, Chattopadhyay A (2007) Orientation and dynamics of melittin in membranes of varying composition utilizing NBD fluorescence. Biophysical J 92:1271–1283

    Article  Google Scholar 

  • Rapson AC, Hossain MA, Wade JD, Nice EC, Smith TA, Clayton AHA, Gee ML (2011) Structural dynamics of a lytic peptide interacting with a supported lipid bilayer. Biophys J 100:1353–1361

    Article  PubMed  CAS  Google Scholar 

  • Romani AP, Ito AS (2009) Interaction of adrenocorticotropin peptides with micro-heterogeneous systems. A fluorescence study. Biophys Chem 139:92–98

    Article  PubMed  CAS  Google Scholar 

  • Romani AP, Marquezin CA, Soares AEE, Ito AS (2006) Study of the interaction between Apis mellifera venom and micro-heterogeneous systems. J Fluorescence 16:423–430

    Article  CAS  Google Scholar 

  • Romani AP, Marquezin CA, Ito AS (2010) Fluorescence spectroscopy of small peptides interacting with microheterogeneous micelles. Int J Pharmaceutics 383:154–156

    Article  CAS  Google Scholar 

  • Rouser G, Fleischer S, Yamamoto A (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496

    Article  PubMed  CAS  Google Scholar 

  • Souza ES, Hirata IY, Juliano L, Ito AS (2000) End-to-end distribution distances in bradykinin observed by fluorescence energy transfer. Bioch Biophys Acta 1474:251–261

    Article  Google Scholar 

  • Takara M, Eisenhut JK, Hirata IY, Juliano L, Ito AS (2009) Solvent effects in optical spectra of ortho-aminobenzoic acid derivatives. J Fluoresc 19:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • Turchiello RF, Lamy-Freund MT, Hirata IY, Juliano L, Ito AS (1998) Ortho-aminobenzoic acid as a fluorescent probe for the interaction between peptides and micelles. Biophys Chem 73:217–225

    Article  PubMed  CAS  Google Scholar 

  • Turchiello RF, Lamy-Freund MT, Hirata IY, Juliano Land Ito AS (2002) Ortho-aminobenzoic acid-labeled bradykinins in interaction with lipid vesicles: fluorescence study. Biopolymers 65:336–346

    Article  PubMed  CAS  Google Scholar 

  • Wang KR, Zhang BZ, Zhang W, Yan JX, Li J, Wang R (2008) Antitumor effects and cell selectivity and structure-activity relationship of a novel antimicrobial peptide Polybia-MP1. Peptides 29:2320–2327

    Google Scholar 

  • Wang K, Yan J, Zhang B, Song J, Jia J, Jia P, Wnag R (2009) Novel mode of action of polybia-MP1 a novel antimicrobial peptide in multidrug resistant leukemic cells. Cancer Lett 278:65–72

    Article  PubMed  CAS  Google Scholar 

  • Wieprecht T, Dathe M, Schümann M, Krause E, Beyermann M, Bienert M (1996) Conformational and functional study of magainin 2 in model membrane environments using the new approach of systematic double-d-amino acid replacement. Biochemistry 35(33):10844–10853

    Article  PubMed  CAS  Google Scholar 

  • Wimley WC, Hristova K (2011) Antimicrobial peptides: success, challenges and unanswered questions. J Membrane Biol 239:27–34

    Article  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  • Zhan H, Lazaridis T (2012) Influence of the membrane dipole potential on peptide binding to lipid bilayers. Biophys Chem 161:1–7

    Article  PubMed  CAS  Google Scholar 

  • Zhao Kinnunen PJ (2002) Binding of the antimicrobial peptide Temporin L to liposomes assessed by trp fluorescence. J Biol Chem 277:25170–25177

    Article  Google Scholar 

Download references

Acknowledgments

JRN acknowledges the financial support from Sao Paulo Research Foundation (FAPESP), grant no. 2011/11640-5. ASI thanks the Brazilian agencies FAPESP, CNPq and INCT-FCx for financial support. Support was received from INCT. ASI and JRN are researchers at CNPq. LMPZ and WMP are recipients of a PhD grant from CAPES. DSA acknowledges the Sao Paulo Research Foundation (FAPESP) for PhD fellowship no. 2012/08147-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Ruggiero Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanin, L.M.P., dos Santos Alvares, D., Juliano, M.A. et al. Interaction of a synthetic antimicrobial peptide with model membrane by fluorescence spectroscopy. Eur Biophys J 42, 819–831 (2013). https://doi.org/10.1007/s00249-013-0930-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-013-0930-0

Keywords

Navigation