Skip to main content
Log in

Dynamics and dimension of an amyloidogenic disordered state of human β2-microglobulin

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Human β2-microglobulin (β2m) aggregation is implicated in dialysis-related amyloidosis. Previously, it has been shown that β2m adopts an ensemble of partially unfolded states at low pH. Here we provide detailed structural and dynamical insights into the acid unfolded and yet compact state of β2m at pH 2.5 using a host of fluorescence spectroscopic tools. These tools allowed us to investigate protein conformational dynamics at low micromolar protein concentrations in an amyloid-forming condition. Our equilibrium fluorescence data in combination with circular dichroism data provide support in favor of progressive structural dissolution of β2m with lowering pH. The acid unfolded intermediate at pH 2.5 has high 8-anilinonaphthalene, 1-sulfonic acid (ANS)-binding affinity and is devoid of significant secondary structural elements. Using fluorescence lifetime measurements, we have been able to monitor the conformational transition during the pH transition from the native to the compact disordered state. Additionally, using time-resolved fluorescence anisotropy measurements, we have been able to distinguish this compact disordered state from the canonical denatured state of the protein by identifying unique dynamic signatures pertaining to the segmental chain mobility. Taken together, our results demonstrate that β2m at pH 2.5 adopts a compact noncanonical unfolded state resembling a collapsed premolten globule state. Additionally, our stopped-flow fluorescence kinetics results provide mechanistic insights into the formation of a compact disordered state from the native form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bhattacharya M, Mukhopadhyay S (2012) Structural and dynamical insights into the molten-globule form of ovalbumin. J Phys Chem B 116:520–531

    Article  PubMed  CAS  Google Scholar 

  • Crick SL, Jayaraman M, Frieden C, Wetzel R, Pappu RV (2006) Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proc Natl Acad Sci USA 103:16764–16769

    Article  PubMed  CAS  Google Scholar 

  • Dalal V, Bhattacharya M, Narang D, Sharma PK, Mukhopadhyay S (2012) Nanoscale fluorescence imaging of single amyloid fibrils. J Phys Chem Lett 3:1783–1787

    Article  CAS  Google Scholar 

  • Drescher M, Huber M, Subramaniam V (2012) Hunting the chameleon: structural conformations of the intrinsically disordered protein α-synuclein. Chem BioChem 13:761–768

    CAS  Google Scholar 

  • Eichner T, Radford SE (2011) A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell 43:8–18

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203

    Article  PubMed  CAS  Google Scholar 

  • Gorevic PD, Munoz PC, Casey TT, DiRaimondo CR, Stone WJ, Prelli FC, Rodrigues MM, Poulik MD, Frangione B (1986) Polymerization of intact beta 2-microglobulin in tissue causes amyloidosis in patients on chronic hemodialysis. Proc Natl Acad Sci USA 83:7908–7912

    Article  PubMed  CAS  Google Scholar 

  • Gosal WS, Morten IJ, Hewitt EW, Smith DA, Thomson NH, Radford SE (2005) Competing pathways determine fibril morphology in the self assembly of β2-microglobulin into amyloid. J Mol Biol 351:850–864

    Article  PubMed  CAS  Google Scholar 

  • Jain N, Bhattacharya M, Mukhopadhyay S (2011) Chain collapse of an amyloidogenic intrinsically disordered protein. Biophys J 101:1720–1729

    Article  PubMed  CAS  Google Scholar 

  • Katou H, Kanno T, Hoshino M, Hagihara Y, Tanaka H, Kawai T, Hasegawa K, Naiki H, Goto Y (2002) The role of disulfide bond in the amyloidogenic state of beta(2)-microglobulin studied by heteronuclear NMR. Pro Sci 11:2218–2229

    Article  CAS  Google Scholar 

  • Krishnamoorthy G (2012) Motional dynamics in proteins and nucleic acids control their function: revelation by time-domain fluorescence. Curr Sci 102:266–276

    CAS  Google Scholar 

  • Kuwajima K (1996) The molten globule state of α-lactalbumin. FASEB J 10:102–109

    PubMed  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Lee J, Culyba EK, Powers ET, Kelly JW (2011) Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nat Chem Biol 7:602–609

    Article  PubMed  CAS  Google Scholar 

  • Luheshi LM, Crowther DC, Dobson CM (2008) Protein misfolding and disease: from the test tube to the organism. Curr Opin Chem Biol 12:25–31

    Article  PubMed  CAS  Google Scholar 

  • McParland VJ, Kad NM, Kalverda AP, Brown A, Kirwin-Jones P, Hunter MG, Sunde M, Radford SE (2000) Partially unfolded states of beta (2)-microglobulin and amyloid formation in vitro. Biochemistry 39:8735–8746

    Article  PubMed  CAS  Google Scholar 

  • Millar DP (1996) Time-resolved fluorescence spectroscopy. Curr Opin Struct Biol 6:637–642

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Gonzalez I, Soto C (2011) Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 22:482–487

    Article  PubMed  CAS  Google Scholar 

  • Mukaiyama A, Nakamura T, Makabe K, Maki K, Goto Y, Kuwajima K (2013) The molten globule of β 2-microglobulin accumulated at pH 4 and its role in protein folding. J Mol Biol 425:273–291

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Nayak P, Udgaonkar JB, Krishnamoorthy G (2006) Characterization of the formation of amyloid protofibrils from barstar by mapping residue-specific fluorescence dynamics. J Mol Biol 358:935–942

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Krishnan R, Lemke EA, Lindquist S, Deniz AA (2007) A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc Natl Acad Sci USA 104:2649–2654

    Article  PubMed  CAS  Google Scholar 

  • Naiki H, Hashimoto N, Suzuki S, Kimura H, Nakakuki K, Gejyo F (1997) Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid 4:223–232

    Article  CAS  Google Scholar 

  • Pappu RV, Wang X, Vitalis A, Crick SL (2008) A polymer physics perspective on driving forces and mechanisms for protein aggregation. Arch Biochem Biophys 469:132–141

    Article  PubMed  CAS  Google Scholar 

  • Platt GW, McParland VJ, Kalverda AP, Homans SW, Radford SE (2005) Dynamics in the unfolded state of β2-microglobulin studied by NMR. J Mol Biol 346:279–294

    Article  PubMed  CAS  Google Scholar 

  • Ptitsyn OB (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229

    Article  PubMed  CAS  Google Scholar 

  • Saper MA, Bjorkman PJ, Wiley DC (1991) Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 Å resolution. J Mol Biol 219:277–319

    Article  PubMed  CAS  Google Scholar 

  • Semisotnov GV, Rodionova NA, Razgulyaev OL, Uversky VN, Gripas AF, Gllmanshln RI (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31:119–128

    Article  PubMed  CAS  Google Scholar 

  • Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289:1317–1321

    Article  PubMed  CAS  Google Scholar 

  • Skora L, Becker S, Zweckstetter M (2010) Molten globule precursor states are conformationally correlated to amyloid fibrils of human beta-2-microglobulin. J Am Chem Soc 132:9223–9225

    Article  PubMed  CAS  Google Scholar 

  • Smith DP, Jones S, Serpell LC, Sunde M, Radford SE (2003) A systematic investigation into the effect of protein destabilisation on beta 2-microglobulin amyloid formation. J Mol Biol 330:943–954

    Article  PubMed  CAS  Google Scholar 

  • Trexler AJ, Rhoades E (2010) Single molecule characterization of α-synuclein in aggregation-prone states. Biophys J 99:3048–3055

    Article  PubMed  CAS  Google Scholar 

  • Trinh CH, Smith DP, Kalverda AP, Phillips SE, Radford SE (2002) Crystal structure of monomeric human beta-2-microglobulin reveals clues to its amyloidogenic properties. Proc Natl Acad Sci USA 99:9771–9776

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Pro Sci 11:739–756

    Article  CAS  Google Scholar 

  • Uversky VN (2009) Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Pro J 28:305–326

    Article  CAS  Google Scholar 

  • Uversky VN, Fink AL (2004) Conformational constraints for amyloid formation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Winter S, Liiber G (1996) Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys Chem 60:79–88

    Article  PubMed  CAS  Google Scholar 

  • Vitalis A, Pappu RV (2011) Assessing the contribution of heterogeneous distributions of oligomers to aggregation mechanisms of polyglutamine peptides. Biophys Chem 159:14–23

    Article  PubMed  CAS  Google Scholar 

  • Yanagi K, Sakurai K, Yoshimura Y, Konuma T, Lee Y, Sugase K, Ikegami T, Naiki H, Goto Y (2012) The monomer-seed interaction mechanism in the formation of the β2-microglobulin amyloid fibril clarified by solution NMR techniques. J Mol Biol 422:390–402

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of the Mukhopadhyay laboratory for critically reading the manuscript, IISER Mohali for providing generous financial support, and Prof. P. Guptasarma (IISER Mohali) for providing us with the original DNA plasmid for β2-microglobulin. We thank Prof. N. Periasamy (TIFR Mumbai) for providing us with the time-resolved fluorescence data analysis software and Ms. M. Kombrabail (TIFR Mumbai) for assistance with the analysis. Research grant from the Council of Scientific and Industrial Research (to S.M.), postdoctoral fellowship from the Department of Biotechnology (to P.K.S.), and Junior Research Fellowship from the Council of Scientific and Industrial Research (to D.N.) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Mukhopadhyay.

Additional information

D. Narang and P. K. Sharma contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narang, D., Sharma, P.K. & Mukhopadhyay, S. Dynamics and dimension of an amyloidogenic disordered state of human β2-microglobulin. Eur Biophys J 42, 767–776 (2013). https://doi.org/10.1007/s00249-013-0923-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-013-0923-z

Keywords

Navigation