Skip to main content
Log in

Electrogenic proton transport across lipid bilayer membranes mediated by cationic derivatives of rhodamine 19: comparison with anionic protonophores

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Protonophores can be considered as candidates for anti-obesity drugs and tools to prevent excessive reactive oxygen species production in mitochondria by means of a limited decrease in the mitochondrial potential. Experimentally used protonophores are weak acids that can carry protons across a membrane in a neutral (protonated) form, and they come back in an anionic (deprotonated) form. A cationic derivative of rhodamine 19 and plastoquinone (SkQR1) was recently shown to possess uncoupling activity in mitochondria and in intact cells. In this article, we studied the mechanism of action of SkQR1 and its plastoquinone-lacking analog (C12R1) on a planar bilayer lipid membrane by applying voltage jumps. The steady-state current was proportional to the C12R1 concentration in a manner as if the monomeric form of the carrier were operative. As predicted by the carrier model, at high pH, when rhodamines were mainly deprotonated, the current changed immediately following a jump in the applied potential and then remained constant. By contrast, at low pH, the current relaxed from an initially high value to a lower value since the protonated carrier cations were redistributed in the membrane. An inverse pH dependence was revealed with the anionic protonophore CCCP. The dependence of the SkQR1 protonophorous activity on voltage exhibited an increase at high voltages, an effect that might facilitate mild (self-limited) uncoupling of mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersen OS, Finkelstein A, Katz I (1976) Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol 67:749–771

    Article  PubMed  CAS  Google Scholar 

  • Antonenko YN, Avetisyan AV, Bakeeva LE, Chernyak BV, Chertkov VA, Domnina LV, Ivanova OYu, Izyumov DS, Khailova LS, Klishin SS, Korshunov SS, Korshunova GA, Kovaleva NA, Lyamzaev KG, Muntyan MS, Nepryakhina OK, Pashkovskaya AA, Pletjushkina OY, Pustovidko AV, Rokitskaya TI, Ruuge EK, Saprunova VB, Severina II, Simonyan RA, Skulachev IV, Skulachev MV, Sumbatyan NV, Sviryaeva IV, Tashlitsky VN, Tikhomirova NK, Vassiliev YM, Vyssokikh MY, Yaguzhinsky LS, Skulachev VP (2008) Mitochondria-targeted derivative of plastoquinone as tool to interrupt execution of an aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc) 73:1273–1287

    Article  CAS  Google Scholar 

  • Antonenko YN, Avetisyan AV, Cherepanov DA, Knorre DA, Korshunova GA, Markova OV, Ojovan SM, Perevoshchikova IV, Pustovidko AV, Rokitskaya TI, Severina II, Simonyan RA, Smirnova EA, Sobko AA, Sumbatyan NV, Severin FF, Skulachev VP (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers. J Biol Chem 286:17831–17840

    Article  PubMed  CAS  Google Scholar 

  • Antonenko YN, Perevoshchikova IV, Rokitskaya TI, Simonyan RA, Tashlitsky VV, Skulachev VP (2012) Effect of liposomes on energy-dependent uptake of the antioxidant SkQR1 by isolated mitochondria. J Bioenerg Biomembr 44:453–460

    Article  PubMed  CAS  Google Scholar 

  • Balaz S, Sturdik E, Durcova E, Antalik M, Sulo P (1986) Quantitative structure-activity relationship of carbonylcyanide phenylhydrazones as uncouplers of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 851:93–98

    Article  PubMed  CAS  Google Scholar 

  • Benz R, McLaughlin S (1983) The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys J 41:381–398

    Article  PubMed  CAS  Google Scholar 

  • Berkovich AK, Lukashev EP, Melik-Nubarov NS (2012) Dipole potential as a driving force for the membrane insertion of polyacrylic acid in slightly acidic milieu. Biochim Biophys Acta 1818:375–383

    Article  PubMed  CAS  Google Scholar 

  • Blaikie FH, Brown SE, Samuelsson LM, Brand MD, Smith RA, Murphy MP (2006) Targeting dinitrophenol to mitochondria: limitations to the development of a self-limiting mitochondrial protonophore. Biosci Rep 26:231–243

    Article  PubMed  CAS  Google Scholar 

  • Borisova MP, Ermishkin LN, Liberman EA, Silberstein AY, Trofimov EM (1974) Mechanism of conductivity of bimolecular lipid membranes in the presence of tetrachlorotrifluoromethylbenzimidazole. J Membr Biol 18:243–261

    Article  PubMed  CAS  Google Scholar 

  • Brockman H (1994) Dipole potential of lipid membranes. Chem Phys Lipids 73:57–79

    Article  PubMed  CAS  Google Scholar 

  • Cunha FM, Caldeira da Silva CC, Cerqueira FM, Kowaltowski AJ (2011) Mild mitochondrial uncoupling as a therapeutic strategy. Curr Drug Targets 12:783–789

    Article  PubMed  CAS  Google Scholar 

  • Duvvuri M, Gong Y, Chatterji D, Krise JP (2004) Weak base permeability characteristics influence the intracellular sequestration site in the multidrug-resistant human leukemic cell line HL-60. J Biol Chem 279:32367–32372

    Article  PubMed  CAS  Google Scholar 

  • Franklin JC, Cafiso DS (1993) Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Biophys J 65:289–299

    Article  PubMed  CAS  Google Scholar 

  • Gawrisch K, Ruston D, Zimmerberg J, Parsegian VA, Rand RP, Fuller N (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J 61:1213–1223

    Article  PubMed  CAS  Google Scholar 

  • Hall JE, Mead CA, Szabo G (1973) A barrier model for current flow in lipid bilayer membranes. J Membr Biol 11:75–97

    Article  CAS  Google Scholar 

  • Hladky SB (1974) The energy barriers to ion transport by nonactin across thin lipid membranes. Biochim Biophys Acta 352:71–85

    Article  PubMed  CAS  Google Scholar 

  • Il’yasova TM, Rokitskaya TI, Severina II, Antonenko YN, Skulachev VP (2012) Substitution of ether linkage for ester bond in phospholipid increases permeability of bilayer lipid membrane for SkQ1-type penetrating cations. Biochemistry (Mosc) 77:1038–1043

    Article  Google Scholar 

  • Kasianowicz J, Benz R, McLaughlin S (1984) The kinetic mechanism by which CCCP (carbonyl cyanide m-chlorophenylhydrazone) transports protons across membranes. J Membr Biol 82:179–190

    Article  PubMed  CAS  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    Article  PubMed  CAS  Google Scholar 

  • Langner M, Isac T, Hui SW (1995) Interaction of free fatty acids with phospholipid bilayers. Biochim Biophys Acta 1236:73–80

    Article  PubMed  Google Scholar 

  • LeBlanc OH (1971) Effect of uncouplers of oxidative phosphorylation on bilayer membranes: carbonylcyanide-m-chlorophenylhydrazone. J Membr Biol 4:227–251

    Article  CAS  Google Scholar 

  • Liberman EA, Topaly VP (1969) Permeability of biomolecular phospholipid membranes for fat-soluble ions. Biofizika 14:452–461

    PubMed  CAS  Google Scholar 

  • Lou PH, Hansen BS, Olsen PH, Tullin S, Murphy MP, Brand MD (2007) Mitochondrial uncouplers with an extraordinary dynamic range. Biochem J 407:129–140

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S (1972) The mechanism of action of DNP on phospholipid bilayer membranes. J Membr Biol 9:361–372

    Article  PubMed  CAS  Google Scholar 

  • Mueller P, Rudin DO, Tien HT, Wescott WC (1963) Methods for the formation of single bimolecular lipid membranes in aqueous solution. J Phys Chem 67:534–535

    CAS  Google Scholar 

  • Nagamune H, Fukushima Y, Takada J, Yoshida K, Unami A, Shimooka T, Terada H (1993) The lipophilic weak base (Z)-5-methyl-2-[2-(1-naphthyl)ethenyl]-4-piperidinopyridine (AU-1421) is a potent protonophore type cationic uncoupler of oxidative phosphorylation in mitochondria. Biochim Biophys Acta 1141:231–237

    Article  PubMed  CAS  Google Scholar 

  • O’Shaughnessy K, Hladky SB (1983) Transient currents carried by the uncoupler, carbonyl cyanide m-chlorophenylhydrazone. Biochim Biophys Acta 724:381–387

    Article  PubMed  Google Scholar 

  • Pickar AD, Benz R (1978) Transport of oppositely charged lipophilic probe ions in lipid bilayer membranes having various structures. J Membr Biol 44:353–376

    Article  CAS  Google Scholar 

  • Ptak M, Egret-Charlier M, Sanson A, Bouloussa O (1980) A NMR study of the ionization of fatty acids, fatty amines and N-acylamino acids incorporated in phosphatidylcholine vesicles. Biochim Biophys Acta 600:387–397

    Article  PubMed  CAS  Google Scholar 

  • Rokitskaya TI, Klishin SS, Severina II, Skulachev VP, Antonenko YN (2008) Kinetic analysis of permeation of mitochondria-targeted antioxidants across bilayer lipid membranes. J Membr Biol 224:9–19

    Article  PubMed  CAS  Google Scholar 

  • Schwaller MA, Allard B, Lescot E, Moreau F (1995) Protonophoric activity of ellipticine and isomers across the energy-transducing membrane of mitochondria. J Biol Chem 270:22709–22713

    Article  PubMed  CAS  Google Scholar 

  • Severin FF, Severina II, Antonenko YN, Rokitskaya TI, Cherepanov DA, Mokhova EN, Vyssokikh MY, Pustovidko AV, Markova OV, Yaguzhinsky LS, Korshunova GA, Sumbatyan NV, Skulachev MV, Skulachev VP (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proc Natl Acad Sci USA 107:663–668

    Article  PubMed  CAS  Google Scholar 

  • Severina II (1982) Nystatin-induced increase in photocurrent in the system ‘bacteriorhodopsin proteoliposome/bilayer planar membrane’. Biochim Biophys Acta 681:311–317

    Article  CAS  Google Scholar 

  • Skulachev VP (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc) 72:1385–1396

    Article  CAS  Google Scholar 

  • Sun X, Garlid KD (1992) On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes. J Biol Chem 267:19147–19154

    PubMed  CAS  Google Scholar 

  • Von Tscharner V, Radda GK (1981) The effect of fatty acids on the surface potential of phospholipid vesicles measured by condensed phase radioluminescence. Biochim Biophys Acta 643:435–448

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Elena Kotova for valuable comments. This work was supported in part by the Russian Foundation for Basic Research grant 12-04-00199 and the Institute of Mitoengineering, Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana I. Rokitskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rokitskaya, T.I., Ilyasova, T.M., Severina, I.I. et al. Electrogenic proton transport across lipid bilayer membranes mediated by cationic derivatives of rhodamine 19: comparison with anionic protonophores. Eur Biophys J 42, 477–485 (2013). https://doi.org/10.1007/s00249-013-0898-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-013-0898-9

Keywords

Navigation