Skip to main content
Log in

Probing hemoglobin confinement inside submicron silica tubes using synchrotron SAXS and electrochemical response

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The configuration of hemoglobin in solution and confined inside silica nanotubes has been studied using synchrotron small angle X-ray scattering and electrochemical activity. Confinement inside submicron tubes of silica aid in preventing protein aggregation, which is vividly observed for unconfined protein in solution. The radius of gyration (R g) and size polydispersity (p) of confined hemoglobin was found to be lower than that in solution. This was also recently demonstrated in case of confined hemoglobin inside layered polymer capsules. The confined hemoglobin displayed a higher thermal stability with R g and p showing negligible changes in the temperature range 25–75 °C. The differences in configuration between the confined and unconfined protein were reflected in their electrochemical activity. Reversible electrochemical response (from cyclic voltammograms) obtained in case of the confined hemoglobin, in contrary to the observance of only a cathodic response for the unconfined protein, gave direct indication of the differences between the residences of the electroactive heme center in a different orientation compared to that in solution state. The confined Hb showed loss of reversibility only at higher temperatures. The electron transfer coefficient (α) and electron transfer rate constant (k s) were also different, providing additional evidence regarding structural differences between the unconfined and confined states of hemoglobin. Thus, absence of any adverse effects due to confinement of proteins inside the inorganic matrices such as silica nanotubes opens up new prospects for utilizing inorganic matrices as protein “encapsulators”, as well as sensors at varying temperatures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amenitsch H, Bernstorff S, Kriechbaum M, Lombardo D, Mio H, Rappolt M, Laggner P (1997) First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. J Appl Crystallogr 30:872–876

    Article  CAS  Google Scholar 

  • Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotechnology. Chem Soc Rev 35:1028–1042

    Article  PubMed  CAS  Google Scholar 

  • Conrad H, Mayer A, Thomas HP, Vogel H (1969) X-ray small-angle scattering from aqueous solutions of oxy- and deoxyhaemoglobin. J Mol Biol 41:225–229

    Article  PubMed  CAS  Google Scholar 

  • Egger DK, Valentine JS (2001a) Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci 10:250–261

    Article  Google Scholar 

  • Egger DK, Valentine JS (2001b) Crowding and hydration effects on protein conformation: a study with sol-gel encapsulated proteins. J Mol Biol 314:911–922

    Article  Google Scholar 

  • Fenimore PW, Frauenfelder H, McMahon BH, Young RD (2004) Bulk-solvent and hydration-shell fluctuations, similar to α- and β-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci USA 101:14408–14413

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Gao QM (2007) Hemoglobin niobate composite based biosensor for efficient determination of hydrogen peroxide in a broad pH range. Biosens Bioelectron 22:1454–1460

    Article  PubMed  CAS  Google Scholar 

  • González B, Colilla M, De Laorden CL, Vallet-Regí M (2009) A novel synthetic strategy for covalently bonding dendrimers to ordered mesoporous silica: potential drug delivery applications. J Mater Chem 19:9012–9024

    Article  Google Scholar 

  • Hammersley A (1999) FIT2D v. 10.31 ESRF, Grenoble, France

  • Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17:4577–4593

    Article  CAS  Google Scholar 

  • Haynes CA, Norde W (1995) Structures and stabilities of adsorbed proteins. J Colloid Interface Sci 169:313–328

    Article  CAS  Google Scholar 

  • Hungerford G, Benesch J, Mano JF, Reis RL (2007) Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin. Photochem Photobiol Sci 6:152–158

    Article  PubMed  CAS  Google Scholar 

  • Kapoor S, Bhattacharyya AJ (2009) Ultrasound-triggered controlled drug delivery and biosensing using silica nanotubes. J Phys Chem B 113:7155–7163

    Article  CAS  Google Scholar 

  • Kapoor S, Mandal SS, Bhattacharyya AJ (2009) Structure and function of hemoglobin confined inside silica nanotubes. J Phys Chem B 113:14189–14195

    Article  PubMed  CAS  Google Scholar 

  • Kotlarchyk M, Chen S-H (1983) Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. J Chem Phys 79:2461–2469

    Article  CAS  Google Scholar 

  • Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical system. J Electroanal Chem 101:19–79

    Article  CAS  Google Scholar 

  • Lee C-H, Lang J, Yen C-W, Shih P-C, Lin T-S, Mou C-Y (2005) Enhancing stability and oxidation activity of cytochrome c by immobilization in the nanochannels of mesoporous aluminosilicates. J Phys Chem B 109:12277–12286

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Rodi DJ, Mandava S, Minh DDL, Gore DB, Fischetti RF (2008) Molecular crowding inhibits intramolecular breathing motions in proteins. J Mol Biol 375:529–546

    Article  Google Scholar 

  • Li X, Zheng W, Zhang L, Yu P, Lin Y, Su L, Mao L (2009) Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes. Anal Chem 81:8557–8563

    Article  PubMed  CAS  Google Scholar 

  • Makowski L, Bardhan J, Gore D, Lal J, Mandava S, Park S, Rodi DJ, Ho NT, Ho C, Fischetti RF (2011) WAXS studies of the structural diversity of hemoglobin in solution. J Mol Biol 408:909–921

    Article  PubMed  CAS  Google Scholar 

  • Mandal SS, Bhaduri S, Amenitsch H, Bhattacharyya AJ (2012) Synchrotron small-angle X-ray scattering studies of hemoglobin nonaggregation confined inside polymer capsules. J Phys Chem B 116:9604–9610

    Article  PubMed  CAS  Google Scholar 

  • Menaa B, Torres C, Herrero M, Rives V, Gilbert ARW, Eggers DK (2008) Protein adsorption onto organically modified silica glass leads to a different structure than sol-gel encapsulation. Biophys J 95:L51–L53

    Article  PubMed  CAS  Google Scholar 

  • Moreira LM, Poli AL, Costa-Filho AJ, Imasato H (2006) Pentacoordinate and hexacoordinate ferric hemes in acid medium: EPR, UV–vis and CD studies of the giant extracellular hemoglobin of Glossoscolex paulistus. Biophys Chem 124:62–72

    Article  Google Scholar 

  • Murray RW (1984) Chemically modified electrodes. In: Bard AJ (ed) Electroanalytical chemistry. Marcel Dekker, New York, pp 191–368 (surface controlled process)

  • Nakanishi K, Sakiyama T, Imamura K (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91:233–244

    PubMed  CAS  Google Scholar 

  • O’Brien EP, Stan G, Thirumalai D, Brooks BR (2008) Factors governing helix formation in peptides confined to carbon nanotubes. Nano Lett 8:3702–3708

    Article  PubMed  Google Scholar 

  • Peterson ES, Leonard EF, Foulke JA, Oliff MC, Salisbury RD, Kim DY (2008) Folding myoglobin within a sol-gel glass: protein folding constrained to a small volume. Biophys J 95:322–332

    Article  PubMed  CAS  Google Scholar 

  • Shaw WJ, Long JR, Campbell AA, Stayton PS, Drobny GP (2000) A solid state NMR study of dynamics in a hydrated salivary peptide adsorbed to hydroxyapatite. J Am Chem Soc 122:7118–7119

    Article  CAS  Google Scholar 

  • Sorin EJ, Pande VS (2006) Nanotube confinement denatures protein helices. J Am Chem Soc 128:6316–6317

    Article  PubMed  CAS  Google Scholar 

  • Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495–503

    Article  Google Scholar 

  • Svergun DI, Koch MHJ (2003) Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys 66:1735–1782

    Article  CAS  Google Scholar 

  • Svergun DI, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  • Tallury P, Payton K, Santra S (2008) Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine 3:579–592

    Article  PubMed  CAS  Google Scholar 

  • Wada A, Tamaru S-I, Ikeda M, Hamachi I (2009) MCM-enzyme-supramolecular hydrogel hybrid as a fluorescence sensing material for polyanions of biological significance. J Am Chem Soc 131:5321–5330

    Article  PubMed  CAS  Google Scholar 

  • Wang S-F, Chen T, Zhang Z-L, Shen X-C, Lu Z-X, Pang D-W, Wong K-Y (2005) Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir 21:9260–9266

    Article  PubMed  CAS  Google Scholar 

  • Yi J, Thomas LM, Richter-Addo GB (2011) Structure of human R-state aquomethemoglobin at 2.0 Å resolution. Acta Crystallogr F 67:647–651

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank INI (IISc) for TEM, Minakshi Sen (MCBL, IISc) for CLSM imaging. The authors acknowledge the support of the International Centre for Theoretical Physics under ICTP-Elettra Users Program for Synchrotron Radiation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aninda J. Bhattacharyya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5579 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, S.S., Nagarajan, B., Amenitsch, H. et al. Probing hemoglobin confinement inside submicron silica tubes using synchrotron SAXS and electrochemical response. Eur Biophys J 42, 371–382 (2013). https://doi.org/10.1007/s00249-013-0886-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-013-0886-0

Keywords

Navigation