Advertisement

European Biophysics Journal

, Volume 42, Issue 5, pp 355–362 | Cite as

Volume of Hsp90 ligand binding and the unfolding phase diagram as a function of pressure and temperature

  • Vytautas Petrauskas
  • Joana Gylytė
  • Zigmantas Toleikis
  • Piotras Cimmperman
  • Daumantas Matulis
Original Paper

Abstract

Volume changes that accompany protein unfolding and ligand binding are important but largely neglected thermodynamic parameters that may facilitate rational drug design. Here, we determined the volume of lead compound ICPD47 binding to an anticancer target, heat shock protein 90 N-terminal domain, using a pressure shift assay (PressureFluor). The ligand exhibited a stabilizing effect on the protein by increasing its melting pressure and temperature. The Gibbs free energy of unfolding depends on the absence or presence of ligand and has an elliptical shape. Ellipse size increases upon addition of the strongly binding ligand, which stabilizes the protein. The three-dimensional (3D) ellipsoidal surface of the Gibbs free energy of unfolding was calculated with increasing ligand concentrations. The negative volume of ligand binding was relatively large and significantly exceeded the volume of protein unfolding. The pressure shift assay technique could be used to determine the volume changes associated with both protein unfolding as well as ligand binding to protein.

Keywords

Phase diagram Protein stability Thermal shift assay ThermoFluor® Pressure shift assay PressureFluor Hsp90N 

Notes

Acknowledgments

The authors thank Johnson & Johnson Pharmaceutical Research and Development for the donation of the ISS PC1 spectrofluorimeter, Cathy Royer for the donation of the hydrostatic pump, FP7-REGPOT-2009-1 grant "MoBiLi,” agreement no.: 245721, and the COST projects TD0905 and CM0804. P.C. and J.G. thank the European Social Fund and the Republic of Lithuania (grant numbers VP1-3.2-ŠMM-01-K-02-002 and VP1-3.1-ŠMM-01-V-01-002, respectively) for financial support.

References

  1. Brandts JF, Oliveira RJ, Westort C (1970) Thermodynamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease a. Biochemistry 9:1038–1047PubMedCrossRefGoogle Scholar
  2. Chalikian TV (2003) Volumetric properties of proteins. Annu Rev Biophys Biomol Struct 32:207–235PubMedCrossRefGoogle Scholar
  3. Chalikian TV, Macgregor RB (2009) Origins of pressure-induced protein transitions. J Mol Biol 394:834–842PubMedCrossRefGoogle Scholar
  4. Cikotiene I, Kazlauskas E, Matuliene J, Michailoviene V, Torresan J, Jachno J, Matulis D (2009) 5-Aryl-4-(5-substituted-2,4-dihydroxyphenyl)-1,2,3-thiadiazoles as inhibitors of hsp90 chaperone. Bioorg Med Chem Lett 19:1089–1092PubMedCrossRefGoogle Scholar
  5. Cimmperman P, Matulis D (2011) Protein thermal denaturation measurements via a fluorescent dye chap 8. RSC Publishing, London, pp 247–274Google Scholar
  6. Cimmperman P, Baranauskiene L, Jachimoviciute S, Jachno J, Torresan J, Michailoviene V, Matuliene J, Sereikaite J, Bumelis V, Matulis D (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95:3222–3231PubMedCrossRefGoogle Scholar
  7. Dubins DN, Filfil R, Macgregor RB, Chalikian TV (2000) The role of water in protein-ligand interactions: volumetric characterizations of the binding of 2′-CMP and 3′-CMP to ribonuclease A. J Phys Chem B 104:390–401CrossRefGoogle Scholar
  8. Dubins DN, Filfil R, Macgregor RB, Chalikian TV (2003) Volume and compressibility changes accompanying thermally-induced native-to-unfolded and molten globule-to-unfolded transitions of cytochrome c: a high pressure study. Biochemistry 42:8671–8678PubMedCrossRefGoogle Scholar
  9. Fan HY, Shek YL, Amiri A, Dubins DN, Heerklotz H, Macgregor RB, Chalikian TV (2011) Volumetric characterization of sodium-induced g-quadruplex formation. J Am Chem Soc 133:4518–4526PubMedCrossRefGoogle Scholar
  10. Filfil R, Chalikian TV (2003) The thermodynamics of protein–protein recognition as characterized by a combination of volumetric and calorimetric techniques: the binding of turkey ovomucoid third domain to alpha-chymotrypsin. J Mol Biol 326:1271–1288PubMedCrossRefGoogle Scholar
  11. Gekko K, Araga M, Kamiyama T, Ohmae E, Akasaka K (2009) Pressure dependence of the apparent specific volume of bovine serum albumin: insight into the difference between isothermal and adiabatic compressibilities. Biophys Chem 144:67–71PubMedCrossRefGoogle Scholar
  12. Hawley SA (1971) Reversible pressure–temperature denaturation of chymotrypsinogen. Biochemistry 10:2436–2442PubMedCrossRefGoogle Scholar
  13. Herberhold H, Royer CA, Winter R (2004) Effects of chaotropic and kosmotropic cosolvents on the pressure-induced unfolding and denaturation of proteins: an ft-ir study on staphylococcal nuclease. Biochemistry 43:3336–3345PubMedCrossRefGoogle Scholar
  14. Hui Bon Hoa G, McLean MA, Sligar SG (2002) High pressure, a tool for exploring heme protein active sites. Biochim Biophys Acta 1595:297–308CrossRefGoogle Scholar
  15. Jhaveri K, Taldone T, Modi S, Chiosis G (2012) Advances in the clinical development of heat shock protein 90 (hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755PubMedCrossRefGoogle Scholar
  16. Kauzmann W (1987) Thermodynamics of unfolding. Nature 325:763–764CrossRefGoogle Scholar
  17. Kazlauskas E, Petrikaite V, Michailoviene V, Revuckiene J, Matuliene J, Grinius L, Matulis D (2012) Thermodynamics of aryl-dihydroxyphenyl-thiadiazole binding to human hsp90. PLoS One 7:e36899PubMedCrossRefGoogle Scholar
  18. Kitahara R, Simorellis A, Hata K, Maeno A, Yokoyama S, Koide S, Akasaka K (2012) A delicate interplay of structure, dynamics, and thermodynamics for function: a high pressure nmr study of outer surface protein a. Biophys J 102:916–926PubMedCrossRefGoogle Scholar
  19. Kranz JK, Schalk-Hihi C (2011) Protein thermal shifts to identify low molecular weight fragments. Methods Enzymol 493:277–298PubMedCrossRefGoogle Scholar
  20. Ladbury JE, Klebe G, Freire E (2010) Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov 9:23–27PubMedCrossRefGoogle Scholar
  21. Li J, Soroka J, Buchner J (2012) The hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823:624–635PubMedCrossRefGoogle Scholar
  22. Lin LN, Brandts JF, Brandts JM, Plotnikov V (2002) Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry. Anal Biochem 302:144–160PubMedCrossRefGoogle Scholar
  23. Matulis D, Kranz JK, Salemme FR, Todd MJ (2005) Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using thermofluor. Biochemistry 44:5258–5266PubMedCrossRefGoogle Scholar
  24. Merrin J, Kumar P, Libchaber A (2011) Effects of pressure and temperature on the binding of reca protein to single-stranded dna. Proc Natl Acad Sci 108:19913–19918CrossRefGoogle Scholar
  25. Mitra L, Hata K, Kono R, Maeno A, Isom D, Rouget JB, Winter R, Akasaka K, Garca-Moreno B, Royer CA (2007) V(i)-value analysis: a pressure-based method for mapping the folding transition state ensemble of proteins. J Am Chem Soc 129:14108–14109CrossRefGoogle Scholar
  26. Mitra L, Rouget JB, Garcia-Moreno B, Royer CA, Winter R (2008) Towards a quantitative understanding of protein hydration and volumetric properties. ChemPhysChem 9:2715–2721PubMedCrossRefGoogle Scholar
  27. Mollapour M, Neckers L (2012) Post-translational modifications of hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655PubMedCrossRefGoogle Scholar
  28. Nakamura S, Kidokoro SI (2012) Volumetric properties of the molten globule state of cytochrome c in the thermal three-state transition evaluated by pressure perturbation calorimetry. J Phys Chem B 116:1927–1932PubMedCrossRefGoogle Scholar
  29. Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: Are we there yet? Clin Cancer Res 18:64–76PubMedCrossRefGoogle Scholar
  30. Osvath S, Quynh LM, Smeller L (2009) Thermodynamics and kinetics of the pressure unfolding of phosphoglycerate kinase. Biochemistry 48:10146–10150PubMedCrossRefGoogle Scholar
  31. Panick G, Vidugiris GJ, Malessa R, Rapp G, Winter R, Royer CA (1999) Exploring the temperature–pressure phase diagram of staphylococcal nuclease. Biochemistry 38:4157–4164PubMedCrossRefGoogle Scholar
  32. Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E, Carver T, Asel E, Springer BA, Lane P, Salemme FR (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6:429–440PubMedCrossRefGoogle Scholar
  33. Picard D (2012) Preface to hsp90. Biochim Biophys Acta 1823:605–606PubMedCrossRefGoogle Scholar
  34. PuthenpurackalNarayanan S, Maeno A, Matsuo H, Oda M, Morii H, Akasaka K (2012) Extensively hydrated but folded: a novel state of globular proteins stabilized at high pressure and low temperature. Biophys J 102:L8–L10CrossRefGoogle Scholar
  35. Rouget JB, Schroer MA, Jeworrek C, Phse M, Saldana JL, Bessin Y, Tolan M, Barrick D, Winter R, Royer CA (2010) Unique features of the folding landscape of a repeat protein revealed by pressure perturbation. Biophys J 98:2712–2721PubMedCrossRefGoogle Scholar
  36. Rouget JB, Aksel T, Roche J, Saldana JL, Garcia AE, Barrick D, Royer CA (2011) Size and sequence and the volume change of protein folding. J Am Chem Soc 133:6020–6027PubMedCrossRefGoogle Scholar
  37. Ruan K, Xu C, Li T, Li J, Lange R, Balny C (2003) The thermodynamic analysis of protein stabilization by sucrose and glycerol against pressure-induced unfolding. Eur J Biochem 270:1654–1661PubMedCrossRefGoogle Scholar
  38. Sharp SY, Roe SM, Kazlauskas E, Cikotiene I, Workman P, Matulis D, Prodromou C (2012) Co-crystalization and in vitro biological characterization of 5-aryl-4-(5-substituted-2-4-dihydroxyphenyl)-1,2,3-thiadiazole hsp90 inhibitors. PLoS One 7:e44642PubMedCrossRefGoogle Scholar
  39. Smeller L (2002) Pressure–temperature phase diagrams of biomolecules. Biochim Biophys Acta 1595:11–29PubMedCrossRefGoogle Scholar
  40. Smeller L, Meersman F, Heremans K (2006) Refolding studies using pressure: the folding landscape of lysozyme in the pressure–temperature plane. Biochim Biophys Acta 1764:497–505PubMedCrossRefGoogle Scholar
  41. Taipale M, Jarosz DF, Lindquist S (2010) Hsp90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528PubMedCrossRefGoogle Scholar
  42. Todd M, Salemme FR (2003) Direct binding assays for pharma screening. Genet Eng News 23:28–29Google Scholar
  43. Toleikis Z, Cimmperman P, Petrauskas V, Matulis D (2011) Determination of the volume changes induced by ligand binding to heat shock protein 90 using high-pressure denaturation. Anal Biochem 413:171–178PubMedCrossRefGoogle Scholar
  44. Toleikis Z, Cimmperman P, Petrauskas V, Matulis D (2012) Serum albumin ligand binding volumes using high pressure denaturation. J Chem Thermodyn 52:24–29CrossRefGoogle Scholar
  45. Vidugiris GJ, Royer CA (1998) Determination of the volume changes for pressure-induced transitions of apomyoglobin between the native, molten globule, and unfolded states. Biophys J 75:463–470PubMedCrossRefGoogle Scholar
  46. Wiedersich J, Khler S, Skerra A, Friedrich J (2008) Temperature and pressure dependence of protein stability: the engineered fluorescein-binding lipocalin flua shows an elliptic phase diagram. Proc Natl Acad Sci 105:5756–5761PubMedCrossRefGoogle Scholar
  47. Winter R, Lopes D, Grudzielanek S, Vogtt K (2007) Towards an understanding of the temperature/pressure configurational and free-energy landscape of biomolecules. J Non-Equilib Thermodyn 32:41–97CrossRefGoogle Scholar
  48. Zhang J, Peng X, Jonas A, Jonas J (1995) Nmr study of the cold, heat, and pressure unfolding of ribonuclease a. Biochemistry 34:8631–8641PubMedCrossRefGoogle Scholar
  49. Zipp A, Kauzmann W (1973) Pressure denaturation of metmyoglobin. Biochemistry 12:4217–4228PubMedCrossRefGoogle Scholar
  50. Zubriene A, Matuliene J, Baranauskiene L, Jachno J, Torresan J, Michailoviene V, Cimmperman P, Matulis D (2009) Measurement of nanomolar dissociation constants by titration calorimetry and thermal shift assay—radicicol binding to hsp90 and ethoxzolamide binding to caii. Int J Mol Sci 10:2662–2680PubMedCrossRefGoogle Scholar
  51. Zubriene A, Gutkowska M, Matuliene J, Chaleckis R, Michailoviene V, Voroncova A, Venclovas C, Zylicz A, Zylicz M, Matulis D (2010) Thermodynamics of radicicol binding to human hsp90 alpha and beta isoforms. Biophys Chem 152:153–163PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2013

Authors and Affiliations

  • Vytautas Petrauskas
    • 1
  • Joana Gylytė
    • 1
  • Zigmantas Toleikis
    • 2
  • Piotras Cimmperman
    • 3
  • Daumantas Matulis
    • 1
  1. 1.Department of Biothermodynamics and Drug DesignVilnius University Institute of BiotechnologyVilniusLithuania
  2. 2.Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  3. 3.Baltic Institute of Advanced TechnologyVilniusLithuania

Personalised recommendations