Skip to main content

The role of carboxymethyl substituents in the interaction of tetracationic porphyrins with DNA

Abstract

Cationic porphyrin-based compounds capable of interacting with DNA are currently under extensive investigation as prospective anticancer and anti-infective drugs. One of the approaches to enhancing the DNA-binding affinity of these ligands is chemical modification of functional groups of the porphyrin macrocycle. We analyzed the interaction with DNA of novel derivatives containing carboxymethyl and ethoxycarbonylmethyl substituents at quaternary nitrogen atoms of pyridinium groups at the periphery of the porphyrin macrocycle. The parameters of binding of 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin (P1) and 5,10,15,20-tetrakis(N-ethoxycarbonylmethyl-4-pyridinium)porphyrin (P2) to double-stranded DNA sequences of different nucleotide content were determined using optical spectroscopy. The association constant of P1 interaction with calf thymus DNA (K = 3.4 × 106 M−1) was greater than that of P2 (K = 2.8 × 105 M−1). Preferential binding of P1 to GC- rather than AT-rich oligonucleotides was detected. In contrast, P2 showed no preference for particular nucleotide content. Modes of binding of P1 and P2 to GC and AT duplexes were verified using the induced circular dichroism spectra. Molecular modeling confirmed an intercalative mode of interaction of P1 and P2 with CpG islands. The carboxyl groups of the peripheral substituent in P1 determine the specific interactions with GC-rich DNA regions, whereas ethoxycarbonylmethyl substituents disfavor binding to DNA. This study contributes to the understanding of the impact of peripheral substituents on the DNA-binding affinity of cationic porphyrins, which is important for the design of DNA-targeting drugs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Berezin M, Berezina N, Semeikin A, V’yugin A (2007) Thermochemistry of solution of some quaternized derivatives of tetra(4-pyridyl)porphine in water. Russ J Gen Chem 77(11):1955–1958. doi:10.1134/S1070363207110199

    Article  CAS  Google Scholar 

  2. Biron E, Voyer N (2005) Synthesis of cationic porphyrin modified amino acids. Chem Commun (Camb) (37):4652–4654. doi:10.1039/b508380j

  3. Borisova O, Golova Y, Gottikh B, Zibrov A, Il’icheva I, Lysov Y, Mamayeva O, Chernov B, Chernyi A, Shchyolkina A (1991) Parallel double stranded helices and the tertiary structure of nucleic acids. J Biomol Struct Dynam 8(6):1187–1210

    Article  CAS  Google Scholar 

  4. Borissova OF, Potapov AP, Surovaya AN, Trubitsyn SN, Volkenstein MV (1972) The dependence of fluorescence quantum yield of the tRNA-acriflavine complexes on the conformational changes in tRNA. FEBS Lett 27(1):167–170

    PubMed  Article  Google Scholar 

  5. Chirvony VS, Galievsky VA, Kruk NN, Dzhagarov BM, Turpin P-Y (1997) Photophysics of cationic 5, 10, 15, 20-tetrakis-(4-N-methylpyridyl) porphyrin bound to DNA, [poly(dA-dT)]2 and [poly(dG-dC)]2: on a possible charge transfer process between guanine and porphyrin in its excited singlet state. J Photochem Photobiol B 40(2):154–162. doi:10.1016/s1011-1344(97)00043-2

    Article  CAS  Google Scholar 

  6. Ding L, Balzarini J, Schols D, Meunier B, de Clercq E (1992) Anti-human immunodeficiency virus effects of cationic metalloporphyrin-ellipticine complexes. Biochem Pharmacol 44(8):1675–1679. doi: 10.1016/0006-2952(92)90486-3

    PubMed  Article  CAS  Google Scholar 

  7. Dutikova IuV, Borisova OF, Shchelkina AK, Lin J, Huang S, Shtil AA, Kaliuzhnyi DN (2010) 5, 10, 15, 20-Tetra-(N-methyl-3-pyridyl)porphyrin destabilizes the anti-parallel telomeric quadruplex d(TTAGGG)4. Mol Biol (Mosk) 44(5):929–937

    Article  Google Scholar 

  8. Ford KG, Neidle S (1995) Perturbations in DNA structure upon interaction with porphyrins revealed by chemical probes, DNA footprinting and molecular modelling. Bioorg Med Chem 3(6):671–677. doi:10.1016/0968-0896(95)00052-i

    PubMed  Article  CAS  Google Scholar 

  9. Frau S, Bernadou J, Meunier B (1997) Nuclease activity and binding characteristics of a cationic “manganese porphyrin-bis(benzimidazole) dye (Hoechst 33258)” conjugate. Bioconjug Chem 8(2):222–231. doi:10.1021/bc970007e

    PubMed  Article  CAS  Google Scholar 

  10. Garcia G, Sarrazy V, Sol V, Le Morvan C, Granet R, Alves S, Krausz P (2009) DNA photocleavage by porphyrin-polyamine conjugates. Bioorg Med Chem 17(2):767–776. doi:10.1016/j.bmc.2008.11.047

    PubMed  Article  CAS  Google Scholar 

  11. Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 19(34):3181–3184. doi:10.1016/s0040-4039(01)94977-9

    Article  Google Scholar 

  12. Haeubl M, Reith LM, Gruber B, Karner U, Muller N, Knor G, Schoefberger W (2009) DNA interactions and photocatalytic strand cleavage by artificial nucleases based on water-soluble gold(III) porphyrins. J Biol Inorg Chem 14(7):1037–1052. doi:10.1007/s00775-009-0547-z

    PubMed  Article  CAS  Google Scholar 

  13. Hui XW, Gresh N, Pullman B (1990) Modelling of the binding specificity in the interactions of cationic porphyrins with DNA. Nucleic Acids Res 18(5):1109–1114

    PubMed  Article  CAS  Google Scholar 

  14. Jain A, Rajeswari MR (2002) Preferential binding of quinolones to DNA with alternating G, C/A, T sequences: a spectroscopic study. J Biomol Struct Dyn 20(2):291–299

    PubMed  Article  CAS  Google Scholar 

  15. Jasuja R, Jameson DM, Nishijo CK, Larsen RW (1997) Singlet excited state dynamics of tetrakis(4-N-methylpyridyl)porphine associated with DNA nucleotides. J Phys Chem B 101(8):1444–1450. doi:10.1021/jp962684w

    Article  CAS  Google Scholar 

  16. Kim JO, Lee YA, Yun BH, Han SW, Kwag ST, Kim SK (2004) Binding of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin to AT oligomers: effect of chain length and the location of the porphyrin stacking. Biophys J 86(2):1012–1017. doi:10.1016/s0006-3495(04)74176-4

    PubMed  Article  CAS  Google Scholar 

  17. Luo Y, Chang CK, Kessel D (1996) Rapid initiation of apoptosis by photodynamic therapy. Photochem Photobiol 63(4):528–534

    PubMed  Article  CAS  Google Scholar 

  18. Magde D, Wong R, Seybold PG (2002) Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem Photobiol 75(4):327–334

    PubMed  Article  CAS  Google Scholar 

  19. McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86(2):469–489. doi: 10.1016/0022-2836(74)90031-X

  20. Mezo G, Herenyi L, Habdas J, Majer Z, Mysliwa-Kurdziel B, Toth K, Csik G (2011) Syntheses and DNA binding of new cationic porphyrin-tetrapeptide conjugates. Biophys Chem 155(1):36–44. doi:10.1016/j.bpc.2011.02.007

    PubMed  Article  CAS  Google Scholar 

  21. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. doi:10.1002/jcc.21256

    PubMed  Article  CAS  Google Scholar 

  22. Pasternack RF (2003) Circular dichroism and the interactions of water soluble porphyrins with DNA. Chirality 15(4):329–332. doi:10.1002/chir.10206

    PubMed  Article  CAS  Google Scholar 

  23. Pedretti A, Villa L, Vistoli G (2004) VEGA—an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des 18(3):167–173. doi:10.1023/B:JCAM.0000035186.90683.f2

    PubMed  Article  CAS  Google Scholar 

  24. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) Chimera a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    Google Scholar 

  25. Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Progr 12(1):241–254. doi:10.1007/bf01593790

    Article  Google Scholar 

  26. Sari MA, Battioni JP, Dupre D, Mansuy D, Le Pecq JB (1990) Interaction of cationic porphyrins with DNA: importance of the number and position of the charges and minimum structural requirements for intercalation. Biochemistry 29(17):4205–4215

    PubMed  Article  CAS  Google Scholar 

  27. Shieh YA, Yang SJ, Wei MF, Shieh MJ (2010) Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4(3):1433–1442. doi:10.1021/nn901374b

    PubMed  Article  CAS  Google Scholar 

  28. Steenkeste K, Tfibel F, Perree-Fauvet M, Briandet R, Fontaine-Aupart MP (2010) Tracking the photosensitizing antibacterial activity of mono(acridyl)bis(arginyl)porphyrin (MABAP) by time-resolved spectroscopy. J Phys Chem A 114(9):3334–3339. doi:10.1021/jp910387a

    PubMed  Article  CAS  Google Scholar 

  29. Stewart JJP (2007) Semiempirical molecular orbital methods. In: Reviews in computational chemistry. Wiley, New York, pp 45–81. doi:10.1002/9780470125786.ch2

  30. Strickland JA, Marzilli LG, Gay KM, Wilson WD (1988) Porphyrin and metalloporphyrin binding to DNA polymers: rate and equilibrium binding studies. Biochemistry 27(24):8870–8878. doi:10.1021/bi00424a027

    PubMed  Article  CAS  Google Scholar 

  31. Tada-Oikawa S, Hirayama J, Hirakawa K, Kawanishi S (2009) DNA damage and apoptosis induced by photosensitization of 5,10,15,20-tetrakis (N-methyl-4-pyridyl)-21H,23H-porphyrin via singlet oxygen generation. Photochem Photobiol 85(6). doi:10.1111/j.1751-1097.2009.00600.x

  32. Tjahjono DH, Mima S, Akutsu T, Yoshioka N, Inoue H (2001) Interaction of metallopyrazoliumylporphyrins with calf thymus DNA. J Inorg Biochem 85(2–3):219–228. doi:10.1016/S0162-0134(01)00186-6

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank O. Mamaeva for assistance in CD measurements. This study was supported by the Russian Foundation for Basic Research (grant 12-04-00929-a).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dmitry N. Kaluzhny.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kovaleva, O.A., Tsvetkov, V.B., Shchyolkina, A.K. et al. The role of carboxymethyl substituents in the interaction of tetracationic porphyrins with DNA. Eur Biophys J 41, 723–732 (2012). https://doi.org/10.1007/s00249-012-0848-y

Download citation

Keywords

  • DNA
  • Porphyrins
  • Affinity
  • Absorption
  • Fluorescence
  • Molecular docking