Skip to main content
Log in

Probing the catalytic allosteric mechanism of rabbit muscle pyruvate kinase by tryptophan fluorescence quenching

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Pyruvate kinase acts as an allosteric enzyme, playing a crucial role in the catalysis of the final step of the glycolytic pathway. In this study, site-specific mutagenesis and tryptophan fluorescence quenching were used to probe the catalytic allosteric mechanism of rabbit muscle pyruvate kinase. Movement of the B domain was found to be essential for the catalytic reaction. Rotation of the B domain in the opening of the cleft between domains B and A induced by the binding of activating cations allows substrates to bind, whereas substrate binding shifts the rotation of the B domain in the closure of the cleft. Trp-157 accounts for the differences in tryptophan fluorescence signal with and without activating cations and substrates. Trp-481 and Trp-514 are brought into an aqueous environment after phenylalanine binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PK:

Pyruvate kinase

CD:

Circular dichroism

FT-IR:

Fourier transform infrared spectroscopy

ADP:

Adenosine diphosphate

PEP:

Phosphoenolpyruvate

TMK buffer:

50 mM Tris, 8 mM MgSO4, and 75 mM KCl at pH 7.5

Phe:

Phenylalanine

GdnHCl:

Guanidine hydrochloride

References

  • Boyer PD, Lardy HA, Phillips PH (1942) The role of potassium in muscle phosphorylation. J Biol Chem 146:673–682

    CAS  Google Scholar 

  • Bucher T, Pfleiderer G (1955) Pyruvate kinase from muscle: pyruvate phosphokinase, pyruvic phosphoferase, phosphopyruvate transphosphorylase, phosphate—transferring enzyme II, etc. Phosphoenolpyruvate + ADP ⇌ Pyruvate + ATP. Method Enzymol 1:435–440

    Article  Google Scholar 

  • Carminat H, Deasua LJ, Leiderma B, Rozengur E (1971) Allosteric properties of skeletal muscle pyruvate kinase. J Biol Chem 246:7284–7288

    Google Scholar 

  • Chen R, Lee JC (2003) Functional roles of loops 3 and 4 in the cyclic nucleotide binding domain of cyclic AMP receptor protein from Escherichia coli. J Biol Chem 278:13235–13243

    Article  PubMed  CAS  Google Scholar 

  • Consler TG, Lee JC (1988) Domain interaction in rabbit muscle pyruvate kinase. I. Effects of ligands on protein denaturation induced by guanidine hydrochloride. J Biol Chem 263:2787–2793

    PubMed  CAS  Google Scholar 

  • Consler TG, Uberbacher EC, Bunick GJ, Liebman MN, Lee JC (1988) Domain interaction in rabbit muscle pyruvate kinase. II. Small angle neutron scattering and computer simulation. J Biol Chem 263:2794–2801

    PubMed  CAS  Google Scholar 

  • de Rooij J, Zwartkruis FJT, Verheijen MHG, Cool RH, Nijman SMB, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477

    Article  PubMed  Google Scholar 

  • Dong A, Caughey WS (1994) Infrared methods for study of hemoglobin reactions and structures. Methods Enzymol 232:139–175

    Article  PubMed  CAS  Google Scholar 

  • Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29:3303–3308

    Article  PubMed  CAS  Google Scholar 

  • Gupta RK, Oesterling RM, Mildvan AS (1976) Dual divalent cation requirement for activation of pyruvate kinase: essential roles of both enzyme- and nucleotide-bound metal ions. Biochemistry 15:2881–2887

    Article  PubMed  CAS  Google Scholar 

  • Kayne FJ, Price NC (1972) Conformational changes in the allosteric inhibition of muscle pyruvate kinase by phenylalanine. Biochemistry 11:4415–4420

    Article  PubMed  CAS  Google Scholar 

  • Kayne FJ, Suelter CH (1965) Effects of temperature, substrate, and activating cations on the conformations of pyruvate kinase in aqueous solutions. J Am Chem Soc 87:897–900

    Article  PubMed  CAS  Google Scholar 

  • Kwan C-Y, Davis RC (1980) pH-dependent amino acid induced conformational changes of rabbit muscle pyruvate kinase. Can J Biochem 58:188–193

    Article  PubMed  CAS  Google Scholar 

  • Larsen TM, Laughlin LT, Holden HM, Rayment I, Reed GH (1994) Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate. Biochemistry 33:6301–6309

    Article  PubMed  CAS  Google Scholar 

  • Larsen TM, Benning MM, Wesenberg GE, Rayment I, Reed GH (1997) Ligand-induced domain movement in pyruvate kinase: structure of the enzyme from rabbit muscle with Mg2+, K+, and L-phospholactate at 2.7 Å resolution. Arch Biochem Biophys 345:199–206

    Article  PubMed  CAS  Google Scholar 

  • Larsen TM, Benning MM, Rayment I, Reed GH (1998) Structure of the Bis(Mg2+)-ATP-oxalate complex of the rabbit muscle pyruvate kinase at 2.1 Å resolution: ATP binding over a barrel. Biochemistry 37:6247–6255

    Article  PubMed  CAS  Google Scholar 

  • Laughlin LT, Reed GH (1997) The monovalent cation requirement of rabbit muscle pyruvate kinase is eliminated by substitution of lysine for glutamate 117. Arch Biochem Biophys 348:262–267

    Article  PubMed  CAS  Google Scholar 

  • Mattevi A, Bolognesi M, Valentini G (1996) The allosteric regulation of pyruvate kinase. FEBS Lett 389:15–19

    Article  PubMed  CAS  Google Scholar 

  • Mildvan AS, Cohn M (1965) Kinetic and magnetic resonance studies of the pyruvate kinase reaction. I. Divalent metal complexes of pyruvate kinase. J Biol Chem 240:238–246

    PubMed  CAS  Google Scholar 

  • Mildvan AS, Cohn M (1966) Kinetic and magnetic resonance studies of the pyruvate kinase reaction. II. Complexes of enzyme, metal, and substrates. J Biol Chem 241:1178–1193

    PubMed  CAS  Google Scholar 

  • Muirhead H, Clayden DA, Barford D, Lorimer CG, Fothergill-Gilmore LA, Schiltz E, Schmitt W (1986) The structure of cat muscle pyruvate kinase. EMBO J 5:475–481

    PubMed  CAS  Google Scholar 

  • Oberfelder RW, Lee LL, Lee JC (1984) Thermodynamic linkages in rabbit muscle pyruvate kinase: kinetic, equilibrium, and structural studies. Biochemistry 23:3813–3821

    Article  PubMed  CAS  Google Scholar 

  • Oria-Hernandez J, Cabrera N, Perez-Montfort R, Ramirez-Silva L (2005) Pyruvate kinase revisited: the activating effect of K+. J Biol Chem 280:37924–37929

    Article  PubMed  CAS  Google Scholar 

  • Ou Y, Tao W, Zhang Y, Wu G, Yu S (2010) The conformational change of rabbit muscle pyruvate kinase induced by activating cations and its substrates. Int J Biol Macromol 47:228–232

    Article  PubMed  CAS  Google Scholar 

  • Stuart DI, Levine M, Muirhead H, Stammers DK (1979) Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 Å. J Mol Biol 134:109–142

    Article  PubMed  CAS  Google Scholar 

  • Suelter CH (1967) Effects of temperature and activating cations on the fluorescence of pyruvate kinase. Biochemistry 6:418–423

    Article  PubMed  CAS  Google Scholar 

  • Suelter CH, Singleton R, Kayne FJ, Arrington S, Glass J, Mildvan AS (1966) Studies on the interaction of substrate and monovalent and divalent cations with pyruvate kinase. Biochemistry 5:131–139

    Article  PubMed  CAS  Google Scholar 

  • Williams R, Holyoak T, McDonald G, Gui C, Fenton AW (2006) Differentiating a ligand’s chemical requirements for allosteric interactions from those for protein binding. Phenylalanine inhibition of pyruvate kinase. Biochemistry 45:5421–5429

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Lee LLY, Lee JC (2003) Effects of metabolites on the structural dynamics of rabbit muscle pyruvate kinase. Biophys Chem 103:1–11

    Article  PubMed  CAS  Google Scholar 

  • Yu SN, Mei FC, Lee JC, Cheng XD (2004) Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting. Biochemistry 43:1908–1920

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported in part by grants from the National Natural Science Foundation of China (No. 30970631), and Shanghai Leading Academic Discipline Project (No. B109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoning Yu.

Additional information

Feng Li and Ting Yu equally contribute to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Yu, T., Zhao, Y. et al. Probing the catalytic allosteric mechanism of rabbit muscle pyruvate kinase by tryptophan fluorescence quenching. Eur Biophys J 41, 607–614 (2012). https://doi.org/10.1007/s00249-012-0828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0828-2

Keywords

Navigation