Skip to main content
Log in

Effect of the A30P mutation on the structural dynamics of micelle-bound αSynuclein released in water: a molecular dynamics study

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Atomistic molecular dynamics simulation has been used to probe the effect of the A30P mutation on the structural dynamics of micelle-bound, helical αSynuclein when released in an aqueous environment. On the timescales simulated, the effect of the mutation on the secondary structure is restricted to local changes close to the mutation site in the N-terminal helical domain. The changes are transient, and all residues except Lys23 recover their initial structure. The local behavior due to the mutation gives rise to a global difference in the A30P mutant in the form of a permanent kink in the N-terminal helical domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abedini A, Raleigh DP (2009) A role for helical intermediates in amyloid formation by natively unfolded polypeptides? Phys Biol 6:015005

    Article  PubMed  Google Scholar 

  • Barlow DJ, Thornton JM (1988) Helix geometry in proteins. J Mol Biol 201:601–619

    Article  PubMed  CAS  Google Scholar 

  • Bussell R, Eliezer D (2001) Residual structure and dynamics in Parkinson’s disease-associated mutants of αSynuclein. J Biol Chem 276:45996–46003

    Article  PubMed  CAS  Google Scholar 

  • Bussell R, Eliezer D (2004) Effects of Parkinson’s disease-linked mutations on the structure of lipid-associated αSynuclein. Biochemistry 43:4810–4818

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Chen X, Rizo J, Jahn R, Südhof TC (2003) A broken α-helix in folded αSynuclein. J Biol Chem 278:15313–15318

    Article  PubMed  CAS  Google Scholar 

  • Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant αSynuclein linked to early-onset Parkinson’s disease. Nat Med 4:1318–1320

    Article  PubMed  CAS  Google Scholar 

  • Conway KA, Lee S-J, Rochet J-C, Ding TT, Williamson RE, Lansbury PT (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both αSynuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Nat Acad Sci USA 97:571–576

    Article  PubMed  CAS  Google Scholar 

  • Cookson MR (2005) The biochemistry of Parkinson’s disease. Ann Rev Bio 74:29–52

    Article  CAS  Google Scholar 

  • Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, LaBaer J, Rochet J-C, Bonini NM, Lindquist S (2006) αSynuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    Article  PubMed  CAS  Google Scholar 

  • Crowther RA, Jakes R, Spillantini MG, Goedert M (1998) Synthetic filaments assembled from C-terminally truncated αSynuclein. FEBS Lett 436:309–312

    Article  PubMed  CAS  Google Scholar 

  • Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of αSynuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  PubMed  CAS  Google Scholar 

  • Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of αSynuclein in its free and lipid-associated states. J Mol Biol 307:1061–1073

    Article  PubMed  CAS  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  • Greenbaum EA, Graves CL, Mishizen-Eberz AJ, Lupoli MA, Lynch DR, Englander SW, Axelsen PH, Giasson BI (2005) The E46K Mutation in αSynuclein increases amyloid fibril formation. J Biol Chem 280:7800–7807

    Article  PubMed  CAS  Google Scholar 

  • Hauser CAE, Deng R, Mishra A, Loo Y, Khoe U, Zhuang F, Cheong DW, Accardo A, Sullivan MB, Riekel C, Ying JY, Hauser UA (2011) Natural tri-to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc Nat Acad Sci USA 108:1361–1366

    Article  PubMed  CAS  Google Scholar 

  • Hoyer W, Cherny D, Subramaniam V, Jovin TM (2004) Impact of the acidic C-terminal region comprising amino acids 109–140 on αSynuclein aggregation in vitro. Biochemistry 43:16233–16242

    Article  PubMed  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  • Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, Rohan de Silva HA, Kittel A, Saitoh T (1995) The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–475

    Article  PubMed  CAS  Google Scholar 

  • Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M (1998) Binding of αSynuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273:26292–26294

    Article  PubMed  CAS  Google Scholar 

  • Jo E, Fuller N, Rand RP, George-Hyslop P, Fraser PE (2002) Defective membrane interactions of familial Parkinson’s disease mutant A30P αSynuclein. J Mol Biol 315:799–807

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312

    Article  Google Scholar 

  • Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106

    Article  PubMed  CAS  Google Scholar 

  • Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen JT, Schöls L, Riess O (1998) Ala30Pro mutation in the gene encoding αSynuclein in Parkinson’s disease. Nat Gen 18:106–108

    Article  Google Scholar 

  • Lee H-J, Choi C, Lee S-J (2002) Membrane-bound αSynuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 277:671–678

    Article  PubMed  CAS  Google Scholar 

  • Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and αSynuclein. Nat Rev Neurosci 3:932–942

    Article  PubMed  CAS  Google Scholar 

  • Mackerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25:1584–1604

    Article  PubMed  CAS  Google Scholar 

  • McLean PJ, Kawamata H, Ribich S, Hyman BT (2000) Membrane association and protein conformation of αSynuclein in intact neurons. J Biol Chem 275:8812–8816

    Article  PubMed  CAS  Google Scholar 

  • Mihajlovic M, Lazaridis T (2008) Membrane-bound structure and energetics of αSynuclein. Proteins Struct Funct Bioinform 70:761–778

    Article  CAS  Google Scholar 

  • Norris EH, Giasson BI, Lee VMY, Gerald PS (2004) αSynuclein: normal function and role in neurodegenerative diseases. Curr Top Dev Biol 60:17–54

    Article  PubMed  CAS  Google Scholar 

  • Perlmutter JD, Braun AR, Sachs JN (2009) Curvature dynamics of αSynuclein familial Parkinson disease mutants. J Biol Chem 284:7177–7189

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the αSynuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Uéda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Nat Acad Sci USA 90:11282–11286

    Article  PubMed  Google Scholar 

  • Ulmer TS, Bax A (2005) Comparison of structure and dynamics of micelle-bound human αSynuclein and Parkinson disease variants. J Biol Chem 280:43179–43187

    Article  PubMed  CAS  Google Scholar 

  • Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human αSynuclein. J Biol Chem 280:9595–9603

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in αSynuclein fibril formation. J Biol Chem 276:10737–10744

    Article  PubMed  CAS  Google Scholar 

  • Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal Ld, Hoenicka J, Rodriguez O, Atarés Ba, Llorens Vn, Gomez Tortosa E, del Ser T, Muňoz DG, de Yebenes JG (2004) The new mutation, E46K, of αSynuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

PC acknowledges CSIR for a Junior Research Fellowship. NS acknowledges funds from DST-India (fast track grant GAP280526), funds and computing resources from the Centre of Excellence in Scientific Computing at NCL, and computing resources from CDAC, Pune.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelanjana Sengupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

249_2012_803_MOESM1_ESM.docx

Electronic Supplementary Material: Supplementary material associated with this article consists of plots depicting evolution of persistence parameters for groups in N- and C-terminal domains; evolution of bend angles θ 1 and θ 2; and evolution of the hydrogen bonding network energy for N- and C-helices. (DOCX 2536 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, P., Sengupta, N. Effect of the A30P mutation on the structural dynamics of micelle-bound αSynuclein released in water: a molecular dynamics study. Eur Biophys J 41, 483–489 (2012). https://doi.org/10.1007/s00249-012-0803-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0803-y

Keywords

Navigation