Skip to main content
Log in

Secondary structure determination by FTIR of an archaeal ubiquitin-like polypeptide from Natrialba magadii

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The ubiquitin protein belongs to the β-grasp fold family, characterized by four or five β-sheets with a single α-helical middle region. Ubiquitin-like proteins (Ubls) are structural homologues with low sequence identity to ubiquitin and are widespread among both eukaryotes and prokaryotes. We previously demonstrated by bioinformatics that P400, a polypeptide from the haloalkaliphilic archaeon Natrialba magadii, has structural homology with both ubiquitin and Ubls. This work examines the secondary structure of P400 by Fourier transform infrared spectroscopy (FTIR). After expression in Escherichia coli, recombinant P400 (rP400) was separated by PAGE and eluted pure from zinc-imidazole reversely stained gels. The requirement of high salt concentration of this polypeptide to be folded was corroborated by intrinsic fluorescence spectrum. Our results show that fluorescence spectra of rP400 in 1.5 M KCl buffer shifts and decreases after thermal denaturation as well as after chemical treatment. rP400 was lyophilized and rehydrated in buffer containing 1.5 M KCl before both immunochemical and FTIR tests were performed. It was found that rP400 reacts with anti-ubiquitin antibody after rehydration in the presence of high salt concentrations. On the other hand, like ubiquitin and Ubls, the amide I′ band for rP400 shows 10% more of its sequence to be involved in β-sheet structures than in α-helix. These findings suggest that P400 is a structural homologue of the ubiquitin family proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a, b
Fig. 3a–d
Fig. 4

References

  • Arrondo JL, Goni FM (1999) Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol 72:367–405

    Article  PubMed  CAS  Google Scholar 

  • Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767:1073–1101

    Article  PubMed  CAS  Google Scholar 

  • Bienkowska JR, Hartman H, Smith TF (2003) A search method for homologs of small proteins. Ubiquitin-like proteins in prokaryotic cells? Protein Eng 16(12):897–904

    Article  PubMed  CAS  Google Scholar 

  • Brown JR, Doolittle WF (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61(4):456–502

    PubMed  CAS  Google Scholar 

  • Burroughs AM, Balaji S, Iyer LM, Aravind L (2007) Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Biol Direct 2:18. doi:10.1186/1745-6150-2-18

    Article  PubMed  Google Scholar 

  • Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79(1):13–21

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Iwai K (2004) The ubiquitin system: from basic mechanisms to the patient bed. IUBMB Life 56(4):193–201

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg H, Mevarech M, Zaccai G (1992) Biochemical, structural, and molecular genetic aspects of halophilism. Adv Protein Chem 43:1–62

    Article  PubMed  CAS  Google Scholar 

  • Grabbe C, Dikic I (2009) Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chem Rev 109(4):1481–1494

    Article  PubMed  CAS  Google Scholar 

  • Griebnow K, Klibanov AM (1995) Lyophilization-induced reversible changes in the secondary structure of proteins. Biochemistry 92:10969–10976

    Google Scholar 

  • Hardy E, Castellanos-Serra LR (2004) Reverse-staining of biomolecules in electrophoresis gels: analytical and micropreparative applications. Anal Biochem 328:1–13

    Article  PubMed  CAS  Google Scholar 

  • Haris PI, Severcan F (1999) FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B Enzym 7:207–221

    Article  CAS  Google Scholar 

  • Hartmann-Petersen R, Gordon C (2004) Integral UBL domain proteins: a family of proteasome interacting proteins. Semin Cell Dev Biol 15(2):247–259

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (2000) Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2(8):E153–E157

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458(7237):422–429

    Article  PubMed  CAS  Google Scholar 

  • Humbard MA, Miranda HV, Lim J, Krause DJ, Pritz JR, Zhou G, Chen S, Wells L, Maupin-Furlow JA (2010) Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463:54–60

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Burroughs AM, Aravind L (2006) The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biol 7(7):R60. doi:10.1186/gb-2006-7-7-r60

    Article  PubMed  Google Scholar 

  • Kamekura M, Kates M (1997) Evolution of Archaea: a view of halobacteriologists. Viva Orig 25:149–158

    CAS  Google Scholar 

  • Kauppinen JR, Moffatt DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectrosc 35:271–276

    Article  CAS  Google Scholar 

  • Kong J, Yu S (2007) Fourier transform infrared spectroscopy analysis of protein secondary structure. Acta Biochim Biophys Sin 39(8):549–559

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  PubMed  CAS  Google Scholar 

  • Luthra S, Kalonia DS, Pikal MJ (2006) Effect of hydration on the secondary structure of lyophilized proteins as measured by Fourier transform infrared (FTIR) spectroscopy. Biotechnology 96:2910–2921

    Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  PubMed  CAS  Google Scholar 

  • Mantsch HH, Moffatt DJ, Casal H (1988) Fourier transform methods for spectral resolution enhancement. J Mol Struct 173:285–298

    Article  CAS  Google Scholar 

  • Marquet A (2001) Enzymology of carbon-sulfur bond formation. Curr Opin Chem Biol 5(5):541–549

    Article  PubMed  CAS  Google Scholar 

  • Nercessian D, Marino Buslje C, Ordóñez MV, De Castro RE, Conde RD (2009) Presence of structural homologs of ubiquitin in haloalkaliphilic Archaea. Int Microbiol 12:167–173

    PubMed  CAS  Google Scholar 

  • Palomares-Jerez MF, Guillén J, Villalaín J (2010) Interaction of the N-terminal segment of HCV protein NS5A with model membranes. Biochim Biophys Acta 1798(6):1212–1224

    Article  PubMed  CAS  Google Scholar 

  • Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter J (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 64:661–671

    Article  Google Scholar 

  • Rudolph MJ, Wuebbens MM, Rajagopalan KV, Schindelin H (2001) Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Struct Biol 8:42–46

    Article  PubMed  CAS  Google Scholar 

  • Severcan M, Severcan F, Haris PI (2001) Estimation of protein secondary structure from FTIR spectra using neural networks. J Mol Struct 565–566:383–387

    Article  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1987) Measurment of proteins using bicinchoninic acid. Anal Biochem 150:76–85

    Article  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531–544

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Xi J, Begley TP, Nicholson LK (2001) Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nat Struct Biol 8:47–51

    Article  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eukarya. PNAS 87:4576–4579

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants PIP 6049 from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; EXA397/08 from Universidad Nacional de Mar del Plata (UNMdP), Argentina; and BFU2008-02617-BMC from Ministerio de Ciencia y Tecnología, España. Authors are grateful to Dr. Rosana de Castro for contributing materials for the heterologous expression assays. J.G. was the recipient of a postdoctoral fellowship from the Programa Juan de la Cierva Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ordóñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordóñez, M.V., Guillén, J., Nercessian, D. et al. Secondary structure determination by FTIR of an archaeal ubiquitin-like polypeptide from Natrialba magadii . Eur Biophys J 40, 1101–1107 (2011). https://doi.org/10.1007/s00249-011-0719-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0719-y

Keywords

Navigation