Skip to main content

Plasma membrane charging of Jurkat cells by nanosecond pulsed electric fields

Abstract

The initial effect of nanosecond pulsed electric fields (nsPEFs) on cells is a change of charge distributions along membranes. This first response is observed as a sudden shift in the plasma transmembrane potential that is faster than can be attributed to any physiological event. These immediate, yet transient, effects are only measurable if the diagnostic is faster than the exposure, i.e., on a nanosecond time scale. In this study, we monitored changes in the plasma transmembrane potential of Jurkat cells exposed to nsPEFs of 60 ns and amplitudes from 5 to 90 kV/cm with a temporal resolution of 5 ns by means of the fast voltage-sensitive dye Annine-6. The measurements suggest the contribution of both dipole effects and asymmetric conduction currents across opposite sides of the cell to the charging. With the application of higher field strengths the membrane charges until a threshold voltage value of 1.4–1.6 V is attained at the anodic pole. This indicates when the ion exchange rates exceed charging currents, thus providing strong evidence for pore formation. Prior to reaching this threshold, the time for the charging of the membrane by conductive currents is qualitatively in agreement with accepted models of membrane charging, which predict longer charging times for lower field strengths. The comparison of the data with previous studies suggests that the sub-physiological induced ionic imbalances may trigger other intracellular signaling events leading to dramatic outcomes, such as apoptosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Beebe SJ, Schoenbach KH (2005) Nanosecond pulsed electric fields: a new stimulus to activate intracellular signaling. J Biomed Biotechnol 4:297–300. doi:10.1155/JBB.2005.297

    Article  Google Scholar 

  • Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH (2003) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J 17:1493–1495. doi:10.1096/fj.02-0859fje

    PubMed  CAS  Google Scholar 

  • Beebe SJ, White J, Blackmore PF, Deng Y, Somers K, Schoenbach KH (2004a) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22:785–796. doi:10.1089/104454903322624993

    Article  Google Scholar 

  • Beebe SJ, Blackmore PF, White J, Joshi RP, Schoenbach KH (2004b) Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. Physiol Meas 25:1077–1109. doi:10.1088/0967-3334/25/4/023

    Article  PubMed  Google Scholar 

  • Benz R, Zimmermann U (1980) Pulse lenght dependence of the electrical breakdown in lipid bilayer membranes. Biochim Biophys Acta 597:637–642

    Article  PubMed  CAS  Google Scholar 

  • Böckmann RA, de Groot BL, Kakorin S, Neumann E, Grubmüller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850. doi:10.1529/biophysj.108.129437

    Article  PubMed  Google Scholar 

  • Bowman AM, Nesin OM, Pakhomova ON, Pakhomov AG (2010) Analysis of plasma membrane integrity by fluorescent detection of Tl+ uptake. J Membrane Biol 236:15–26. doi:10.1007/s00232-010-9269-y

    Article  CAS  Google Scholar 

  • Chen N, Schoenbach KH, Kolb JF, Swanson RJ, Garner AL, Yang J, Joshi RP, Beebe SJ (2004) Leukemic cell intracellular responses to nanosecond electric fields. Biochem Biophys Res Commun 317:421–427. doi:10.1016/j.bbrc.2004.03.063

    Article  PubMed  CAS  Google Scholar 

  • Deng J, Schoenbach KH, Buescher ES, Hair PS, Fox PM, Beebe SJ (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84:2709–2714. doi:10.1016/S0006-3495(03)75076-0

    Google Scholar 

  • Escoffre J-M, Portet T, Wasungu L, Teissié J, Dean D, Rols M-P (2009) What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol Biotechnol 41:286–295. doi:10.1007/s12033-008-9121-0

    Article  PubMed  CAS  Google Scholar 

  • Fischer JK, von Bruning DM, Labhart H (1976) Lightmodulation by electrochromism. Appl Opt 15:2812–2816

    Article  PubMed  CAS  Google Scholar 

  • Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli RL, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90:3608–3615. doi:10.1529/biophysj.105.072777

    Article  PubMed  CAS  Google Scholar 

  • Gowrishankar TR, Esser AT, Vasilkoski Z, Smith KC, Weaver JC (2006) Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun 341:1266–1276. doi:10.1016/j.bbrc.2006.01.094

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Joshi RP, Schoenbach KH (2005a) Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Phys Rev E 72:031902(10 pp). doi:10.1103/PhysRevE.72.031902

  • Hu Q, Viswanadham S, Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF (2005b) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E 71:031914. doi:10.1103/PhysRevE.71.031914

    Article  CAS  Google Scholar 

  • Hu Q, Sridhara V, Joshi RP, Kolb JF, Schoenbach KH (2006) Molecular dynamics analysis of high electric pulse effects on bilayer membranes containing DPCC and DPSS. IEEE Trans Plasma Sci 34:1405–1411. doi:10.1109/TPS.2006.876501

    Article  CAS  Google Scholar 

  • Joshi RP, Hu Q, Schoenbach KH (2004) Modeling studies of cell response to ultrashort, high-intensity electric fields–implications for intracellular manipulation. IEEE Trans Plasma Sci 32:1677–1688. doi:10.1109/TPS.2004.830971

    Article  Google Scholar 

  • Knisley SB, Blitchington TF, Hill BC, Grant AO, Smith WM, Pilkington TC, Ideker RE (1993) Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ Res 72:255–270

    PubMed  CAS  Google Scholar 

  • Kotnik T, Miklavcic D (2006) Theoretical evaluation of voltage inducement on internal embranes of biological cells exposed to electric fields. Biophys J 90:480–491

    Article  PubMed  CAS  Google Scholar 

  • Krassowska W, Neu JC (1994) Response of a single cell to an external electric field. Biohpys J 66:1768–1776. doi:10.1016/S0006-3495(94)80971-3

    CAS  Google Scholar 

  • Kuhn B, Fromherz P (2003) Annellated hemicyanine dyes in a neuron membrane: molecular stark effect and optical voltage recording. J Phys Chem B 107:7903–7913

    Article  CAS  Google Scholar 

  • Kuhn B, Fromherz F, Denk W (2004) High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophys J 87:631–639. doi:10.1529/biophysj.104.040477

    Article  PubMed  CAS  Google Scholar 

  • Lojewska Z, Farkas DL, Ehrenberg B, Loew LM (1989) Analysis of the effect of medium and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields. Biophys J 56:121–128. doi:10.1016/S0006-3495(89)82657-8

    Article  PubMed  CAS  Google Scholar 

  • Marrink JS, de Vries Tieleman DP AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta 1788:149–168. doi:10.1016/j.bbamem.2008.10.006

    Article  PubMed  CAS  Google Scholar 

  • Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson RJ, Beebe SJ, Kolb JF, Schoenbach KH (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343:351–360. doi:10.1016/j.bbrc.2006.02.181

    Article  PubMed  CAS  Google Scholar 

  • Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL, Ren W, Osgood C, Swanson RJ, Kolb JF, Beebe SJ, Schoenbach KH (2009) A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer 125:438–445. doi:10.1002/ijc.24345

    Article  PubMed  CAS  Google Scholar 

  • Pakhomov AG, Phinney A, Ashmore J, Walker K III, Kolb JF, Kono S, Schoenbach KH, Murphey MR (2004) Characterization of the cytotoxic effect of high-intensity, 10 ns duration electrical pulses. IEEE Trans Plasma Sci 32:1579–1586. doi:10.1109/TPS.2004.831773

    Article  CAS  Google Scholar 

  • Scarlett SS, White JA, Blackmore PF, Schoenbach KH, Kolb JF (2009) Regulation of intracellular calcium concentrations by nanosecond pulsed electric fields. Biochim Biophys Acta 1788:1168–1175. doi:10.1016/j.bbamem.2009.02.006

    Google Scholar 

  • Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448. doi:10.1002/bem.71

    Article  PubMed  CAS  Google Scholar 

  • Schoenbach KH, Joshi RP, Kolb JF, Chen N, Stacey M, Blackmore PF, Buescher ES, Beebe SJ (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE 90:1122–1137. doi:10.1109/JPROC.2004.829009

    Article  Google Scholar 

  • Schwan HP (1957) Electrical properties of tissue and cell suspension. Adv Biol Med Phys 5:147–209

    Google Scholar 

  • Simcic S, Bobanovic F, Kotnik V, Vodovnik L (1997) Local changes in membrane potential intensify neutrophil oxidative burst. Phsiol. Chem Phys Med NMR 29:39–50

    CAS  Google Scholar 

  • Smith KC, Weaver JC (2008) Active mechanisms are needed to describe cell responses to submicrosecond, megavolt-per-meter pulses: cell models for ultrashort pulses. Biophys J 95:1547–1563. doi:10.1529/biophysj.107.121921

    Article  PubMed  CAS  Google Scholar 

  • Tarek M (2004) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053. doi:10.1529/biophysj.104.050617

    Article  Google Scholar 

  • Teissié J, Eynard N, Vernhes MC, Benichou A, Ganeva V, Galutzov B, Cabanes PA (2002a) Recent biotechnological developments of electropulsation. A prospective review. Bioelectrochemistry 55:107–112. doi:10.1016/S1567-5394(01)00138-4

    Google Scholar 

  • Teissié J, Golzio M, Rols MP (2002b) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge. Biochim Biophys Acta 1724:270–280. doi:10.1016/j.bbagen.2005.05.006

    Google Scholar 

  • Tekle E, Astumian RD, Chock PB (1990) Electro-permeabilization of cell membranes: effect of the resting membrane potential. Biochem Biophys Res Commun 172:282–287

    Article  PubMed  CAS  Google Scholar 

  • Tekle E, Astumian RD, Friauf WA, Chock PB (2001) Asymmetric pore distribution and loss of membrane lipid in electroporated DOPC vesicles. Biophys J 91:960–968. doi:10.1016/S0006-3495(01)75754-2

    Article  Google Scholar 

  • Tieleman DP, Leontiadou H, Mark AE, Marrink S-J (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125:6382–6383. doi:10.1021/ja029504i

    Article  PubMed  CAS  Google Scholar 

  • Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306. doi:10.1016/S0006-3495(91)82054-9

    Article  PubMed  CAS  Google Scholar 

  • Vernier PT, Ziegler MJ (2007) Nanosecond field alignment of head group and water dipoes in electroporating phospholipid bilayers. J Phys Chem B 111:12993–12996. doi:0.1021/jp077148q

    Article  PubMed  CAS  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004a) Nanoelectropulse-induced phosphatidylserine translocation. Biophys J 86:4040–4048. doi:10.1529/biophysj.103.037945

    Article  PubMed  CAS  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004b) Nanosecond pulsed electric fields perturb membrane phospholipids in T lymphoblasts. FEBS Letters 572:103–108. doi:10.1016/j.febslet.2004.07.021

    Article  PubMed  CAS  Google Scholar 

  • Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP (2006a) Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipd bilayers–in cells and in silicio. Phys Biol 3:233–247. doi:10.1088/1478-3975/3/4/001

    Article  PubMed  CAS  Google Scholar 

  • Vernier PT, Sun Y, Gundersen MA (2006b) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biology 7:37. doi:10.1186/1471-2121-7-37

    Article  PubMed  Google Scholar 

  • White JA, Blackmore PF, Schoenbach KH, Beebe SJ (2004) Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. J Biol Chem 279:22964–22972

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Blackmore PF, Hargrave BY, Xiao S, Beebe SJ, Schoenbach KH (2008) The characteristics of nanosecond pulsed electrical field stimulation on platelet aggregation in vitro. Arch Biochem Biophys 471:240–248

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by an AFOSR DOD MURI grant on “Subcellular Response to Narrow Band and Wide Band Radio Frequency Radiation” administered by Old Dominion University. We would also like to thank Peter Fromherz (Max Planck Institute for Biochemistry) and Bernd Kuhn (Max Planck Institute for Medical Research) for their valuable advice and assistance in discussions regarding the Annine-6 dye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen F. Kolb.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

White, J.A., Pliquett, U., Blackmore, P.F. et al. Plasma membrane charging of Jurkat cells by nanosecond pulsed electric fields. Eur Biophys J 40, 947–957 (2011). https://doi.org/10.1007/s00249-011-0710-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0710-7

Keywords