Skip to main content
Log in

Size and conformational features of ErbB2 and ErbB3 receptors: a TEM and DLS comparative study

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

ErbB2 and ErbB3 receptors belong to the epidermal growth factor receptor family. The members of this family are able to form homo- and heterodimers that trigger diverse downstream signalling concerned to multiple cellular events. In the absence of a ligand, ErbB3 adopts a characteristic tethered conformation, which differs from ErbB2 extended conformation. In this work, transmission electron microscopy (TEM) and dynamic light scattering (DLS) have been used to characterize the conformational features and the size of ErBb2 and ErbB3 receptors. Two main objectives are presented. The first one is to evaluate the use of TEM as a tool for structural studies for this family of receptors. The low molecular weight of these proteins represents a challenging purpose for TEM studies. The other one is to search for a relationship between the results obtained by TEM and those obtained for the hydrodynamic size measured by DLS. This comparison has allowed us to identify the conformational differences of the receptors and to anticipate the use of these experimental techniques for the study of the ligand activated heterodimerization, a process related to a significant number of human malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aivaliotis M, Samolis P, Neofotistou E, Remigy E, Rizos AK, Tsiotis G (2003) Molecular size determination of a membrane protein in surfactants by light scattering. Biochim et Biophys Acta 1615:69–76

    Article  PubMed  CAS  Google Scholar 

  • Berne J, Pecora R (2000) Dynamic light scattering with applications to chemistry, biology and physics. Dover Publications, Mineola

    Google Scholar 

  • Bouyain S, Longo PA, Li S, Ferguson KM, Leahy DJ (2005) The extracellular region of ErbB4 adopts a tethered conformation in the absence of ligand. Proc Natl Acad Sci 102:15024–15029

    Article  PubMed  CAS  Google Scholar 

  • Cho HS, Leahy DJ (2002) Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297:1330–1333

    Article  PubMed  CAS  Google Scholar 

  • Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, Leahy DJ (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421:756–760

    Article  PubMed  CAS  Google Scholar 

  • Dawson JP, Bu Z, Lemmon MA (2007) Ligand-induced structural transitions in ErbB receptor extracellular domains. Structure 15:942–954

    Article  PubMed  CAS  Google Scholar 

  • Ferguson KM, Berger MB, Mendrola JM, Cho HS, Leahy DJ, Lemmon MA (2003) EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell 11:507–517

    Article  PubMed  CAS  Google Scholar 

  • Fleishman SJ, Schlessinger J, Ben-Tal N (2002) A putative molecular-activation switch in the transmembrane domain of ErbB2. Proc Natl Acad Sci 99:15937–15940

    Article  PubMed  CAS  Google Scholar 

  • García de la Torre J (1994) Hydrodynamics of segmentally flexible macromolecules. Eur Biophys J 23:307–322

  • García de la Torre J, Llorca O, Carrascosa JL, Valpeusta JM (2001) HYDROMIC: prediction of hydrodynamic properties of rigid macromolecular structures obtained from electron microscopy images. Eur Biophys J 30:457–462

  • García de la Torre J, Pérez Sánchez HE, Ortega A, Hernández JG, Fernandes MX, Díaz FG, López Martínez MC (2003) Calculation of the solution properties of flexible macromolecules: methods and applications. Eur Biophys J 32:477–486

  • Garrett TPJ, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Zhu HJ, Walker F, Frenkel MJ, Garrett TPJ, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Kofler M, Jorissen RN, Nice EC, Burgess AW, Ward CW (2003) The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 11:495–505

    Article  PubMed  CAS  Google Scholar 

  • Kratzin HD, Palm W, Stangel M, Schmidt WE, Friedrich J, Hilschmann N (1989) The primary structure of crystallizable monoclonal immunoglobulin IgG1 Kol. II. Amino acid sequence of the L-chain, gamma-type, subgroup I. Biol Chem Hoppe Seyler 370:263–272

    Article  PubMed  CAS  Google Scholar 

  • Llorca O (2005) Introduction to 3D reconstruction of macromolecules using single particle electron microscopy. Acta Pharmacol Sin 26:1153–1164

    Article  PubMed  CAS  Google Scholar 

  • Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97

    Article  PubMed  CAS  Google Scholar 

  • Mahler HC, Müller R, Frieß W, Delille A, Matheus S (2005) Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm 59:407–417

    Article  PubMed  CAS  Google Scholar 

  • Marchetti S, Sbrana F, Raccis R, Lanzi L, Gambi CMC, Vassalli M, Tiribilli B, Pacini A, Toscano A (2008) Dynamic light scattering and atomic force microscopy imaging on fragments of connecting from human cardiac muscle. Phys Rev E 77:021910

    Article  CAS  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Physik 4:377–445

    Article  Google Scholar 

  • Moriki T, Maruyama H, Maruyama IN (2001) Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain. J Mol Biol 311:1011–1026

    Article  PubMed  CAS  Google Scholar 

  • Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110:775–787

    Article  PubMed  CAS  Google Scholar 

  • Ohi M, Li Y, Cheng Y, Walz T (2004) Negative staining and images classification: powerful tools in modern electron microscopy. Biol Proc Online 6:23–34

    Article  CAS  Google Scholar 

  • Perrin F (1936) Mouvement Brownien d’un ellipsoide. II. Rotation libre de depolarisation des fluorescence: translation et diffusion de molecules ellipsoidales. J Phys Rad 7:1–11

    Article  CAS  Google Scholar 

  • Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comp Phys Comm 27:213–227

    Article  Google Scholar 

  • Schlessinger J (2000) Cell signalling by receptor tyrosine kinases. Cell 103:211–225

    Article  PubMed  CAS  Google Scholar 

  • Sorzano CO, Marabini R, Velazquez-Muriel J, Bilbao-Castro JR, Scheres SH, Carazo JM, Pascual-Montano A (2004) XMIPP: a new generation of an open-source image processing package for electron microscopy. J Struct Biol 148:194–204

    Article  PubMed  CAS  Google Scholar 

  • Sotriffer CA, Liedl KR, Linthicum DS, Rode BM, Varga JM (1998) Ligand-induced domain movement in an antibody Fab: molecular dynamics studies confirm the unique domain movement observed experimentally for Fab NC 6.8 upon complexation and reveal its segmental flexibility. J Mol Biol 278:301–306

    Article  PubMed  CAS  Google Scholar 

  • Stamos J, Sliwkowski MX, Eigenbrot C (2002) Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277:46265–46272

    Article  PubMed  CAS  Google Scholar 

  • Takata S, Norisuye T, Tanaka N, Shibayama M (2000) Heat-Induced aelation of α-lactoglobulin. 1. Time-resolved dynamic light scattering. Macromolecules 3:5470–5475

    Article  Google Scholar 

  • Vígh R, Cser L, Kilár F, Simon I (1989) Different segmental flexibility of human serum transferrin and lactoferrin. Arch Biochem Biophys 275:181–184

    Article  PubMed  Google Scholar 

  • Woeste S, Demchick P (1991) New version of the negative stain. Appl Environ Microbiol 57:1858–1859

    PubMed  CAS  Google Scholar 

  • Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH, Ellis B, Pennisi C, Horne E, Lackey K, Alligood KJ, Rusnak DW, Gilmer TM, Shewchuk L (2004) A unique structure for epidermal growth factor receptor bound to GW572016 (lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64:6652–6659

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the grant MAT2009-12364 from the CICYT (Comisión Interministerial de Ciencia y Tecnología, Spain). JFV acknowledges the CSIC (Consejo Superior de Investigaciones Científicas, Spain) the grant PIE-200850I072. EVA acknowledges the CSIC a JAE-Intro Program fellowship (2010). HP acknowledges the support from members of the Bioprocess Technology team at Sino Biological.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Francisco Vega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicente-Alique, E., Núñez-Ramírez, R., Vega, J.F. et al. Size and conformational features of ErbB2 and ErbB3 receptors: a TEM and DLS comparative study. Eur Biophys J 40, 835–842 (2011). https://doi.org/10.1007/s00249-011-0699-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0699-y

Keywords

Navigation