European Biophysics Journal

, Volume 40, Issue 6, pp 705–714 | Cite as

The influence of 2 kbar pressure on the global and internal dynamics of human hemoglobin observed by quasielastic neutron scattering

  • Marie-Sousai AppavouEmail author
  • Sebastian Busch
  • Wolfgang Doster
  • Ana Gaspar
  • Tobias Unruh
Original Paper


Pressure is a ubiquitous physical parameter in life and is commonly used in the life sciences to study new protein folding pathways or association-dissociation phenomena. In this paper, an investigation of the influence of pressure on hemoglobin, a multimeric protein, at the picosecond time scale is presented using time-of-flight neutron scattering. The aim is to observe the influence of pressure on the translational diffusion and internal motions of hemoglobin in a concentrated solution and a possible dissociation of the subunits as suggested by Pin et al. (Biochemistry 29:9194, 1990) using fluorescence spectroscopy. A new flat 2 kbar pressure cell made of an aluminum alloy has been used, which allowed the effect of pressure to be studied with minimum background contribution. Within this range of pressure, the effect of this physical parameter on global diffusion can be explained in terms of the change in the water buffer viscosity and an oligomerization of hemoglobin subunits, whereas the internal motions were less affected.


Pressure Protein Hemoglobin Dynamics Quasielastic neutron scattering 



The research project was supported by a grant of the Deutsche Forschungsgemeinschaft, SFB 533, TP B11, which is gratefully acknowledged. We would like to acknowledge particularly Joachim Dörbecker and Reinhold Funer who helped to build the 2 kbar pressure cell and the platform for TOFTOF. We would like to thank Jandal Ringe for his help on TOFTOF during our experiments. The ANTARES team, especially Martin Mühlbauer and Elbio Calzada, are thanked for allowing us to use some beam time for neutronography measurements, and to Robert Georgii for beamtime on MIRA to perform the SANS characterization measurements. Finally, we would like to thank Alan Soper for useful discussions.


  1. Appavou M-S, Gibrat G, Bellissent-Funel M-C (2006) Influence of pressure on structure and dynamics of bovine pancreatic trypsin inhibitor (BPTI): small angle and quasi-elastic neutron scattering studies. Biochim Biophys Acta 1764:414–423. doi: 10.1016/j.bbapap.2006.01.010 PubMedGoogle Scholar
  2. Balny C, Masson P, Heremans K (2002) High pressure effects on biological macromolecules: from structural changes to alteration of cellular processes. Biochim Biophys Acta 1595:3–10PubMedCrossRefGoogle Scholar
  3. Bée M (1988) Quasi-elastic neutron scattering, principles and applications in solid state chemistry, biology and materials science. Adam Hilger, BristolGoogle Scholar
  4. Bett KE, Cappi JB (1965) Effect of pressure on the viscosity of water. Nature 207:620. doi: 10.1038/207620a0 CrossRefGoogle Scholar
  5. Cavatorta F, Deriu A, Di Cola D, Middendorf HD (1994) Diffusive properties of water studied by incoherent quasi-elastic neutron scattering. J Phys Condens Matter 6:A113–A117. doi: 10.1088/0953-8984/6/23A/013 CrossRefGoogle Scholar
  6. Chen SH, Teixeira J, Nicklow R (1982) Incoherent quasielastic neutron scattering from water in supercooled regime. Phys Rev A 26:3477–3482. doi: 10.1103/PhysRevA.26.3477 CrossRefGoogle Scholar
  7. Cunsolo, Orecchini A, Petrillo C, RSacchetti F (2006) Quasielastic neutron scattering investigation of the pressure dependence of molecular motions in liquid water. J Chem Phys 124:084503. doi: 10.1063/1.2174007 PubMedCrossRefGoogle Scholar
  8. Dewhurst CD (2001) GRASansP: graphical reduction and analysis SANS program.
  9. Di Bari M, Deriu A, Filabozzi A, Andreani C, Di Venere A, Rosato N (2000) Dynamics of trypsin under pressure. Physica B 276–278:510–511. doi: 10.1016/S0921-4526(99)01831-1 CrossRefGoogle Scholar
  10. Doster W, Gebhardt W (2003) High pressure—unfolding of myoglobin studied by dynamic neutron scattering. Chem Phys 292:383–389. doi: 10.1016/S0301-0104(03)00064-8 CrossRefGoogle Scholar
  11. Doster W, Gebhardt R, Soper A (2003) Pressure induced unfolding of myoglobin: neutron diffraction and dynamic scattering experiments. In: Winter R (ed) Advances in high pressure bioscience and biotechnology II. Springer, Berlin, 29–33Google Scholar
  12. Edelstein SJ, Rehmar MJ, Olson JS, Gibson QH (1970) Functional aspects of the subunits association-dissociation equilibira of hemoglobin. J Biol Chem 245:4372–4381PubMedGoogle Scholar
  13. Feijoo SC, Hayes WW, Watson CE, Martin JH (1997) Effects of microfluidizer technology on Bacillus licheniformis spores in ice cream mix. J Dairy Sci 80:2184–2187. doi: 10.3168/jds.S0022-0302(97)76166-6 PubMedCrossRefGoogle Scholar
  14. Gaspar AM (2007) Methods for analytically estimating the resolution and intensity of neutron time-of-flight spectrometers. The case of the TOFTOF spectrometer. arXiv:0710.5319v1Google Scholar
  15. Gaspar AM, Appavou M-S, Busch S, Unruh T, Doster W (2008) Dynamics of well-folded and natively disordered proteins in solution: a time-of-flight neutron scattering study. Eur Biophys J 37:573–582. doi: 10.1007/s00249-008-0266-3 PubMedCrossRefGoogle Scholar
  16. Georgii R, Böni P, Janoschek M, Schanzer C, Valloppilly S (2007) MIRA—a flexible instrument for VCN. Physica B 397:150–152. doi: 10.1016/j.physb.2007.02.088 CrossRefGoogle Scholar
  17. Longeville S, Lechner RE (2000) Light and heavy water dynamics. Physica B 276–278:534–535. doi: 10.1016/S0921-4526(99)01818-9
  18. Loupiac C, Bonetti M, Pin S, Calmettes P (2002) High-pressure effects on horse heart metmyoglobin studied by small-angle neutron scattering. Eur J Biochem 269:4731–4737. doi: 10.1046/j.1432-1033.2002.03126.x PubMedCrossRefGoogle Scholar
  19. Masson P, Tonello C, Balny C (2001) High-pressure biotechnology in medicine and pharmaceutical science. J Biomed Biotech 1:85–88Google Scholar
  20. McCammon JA, Harvey SC (1988) Dynamics of proteins and nucleic acids. Cambridge University Press, CambridgeGoogle Scholar
  21. Mueser TC, Rogers PH, Arnone A (2000) Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin. Biochemistry 39:15353–15364PubMedCrossRefGoogle Scholar
  22. Perez J, Zanotti J-M, Durand D (1999) Evolution of the internal dynamics of two globular proteins from dry powder to solution. Biophys J 77:454–469. doi: 10.1016/S0006-3495(99)76903-1 Google Scholar
  23. Philo JS, Lary JW, Schuster TM (1988) Quaternary interactions in hemoglobin beta-subunit tetramers. Kinetics of ligand biding and self-assembly. J Biol Chem 263:682–689PubMedGoogle Scholar
  24. Pin S, Royer CA, Gratton E, Alpert B, Weber G (1990) Subunit interactions in hemoglobin probed by fluorescence and high-pressure techniques. Biochemistry 29:9194–9202PubMedCrossRefGoogle Scholar
  25. Prielmeier FX, Lang EW, Speedy RJ, Lüdemann H-D (1987) Diffusion in supercooled water to 300 MPa. Phys Rev Lett 59:1128–1131. doi: 10.1103/PhysRevLett.59.1128 PubMedCrossRefGoogle Scholar
  26. Schillinger B, Calzada E, Lorenz K (2006) Modern neutron imaging: radiography, tomography, dynamic and phase contrast imaging with neutrons. Solid State Phenom 112:61–71. doi: 10.4028/ CrossRefGoogle Scholar
  27. Unruh T, Neuhaus J, Petry W (2007) The high-resolution time-of-flight spectrometer TOFTOF. Nucl Instr Meth Phys Res A 580:1414–1422. doi: 10.1016/j.nima.2007.07.015 Google Scholar
  28. Unruh T, Neuhaus J, Petry W (2008) Erratum to “The high-resolution time-of-flight spectrometer TOFTOF”. Nucl Instr Meth Phys Res A 585: 201. doi: 10.1016/j.nima.2007.11.019
  29. van Camp J, Huyghebaert A (1996) High pressure induced gel formation of haemoglobin and whey proteins at elevated temperatures. Lebensm Wiss Technol 29:49–57. doi: 10.1006/fstl.1996.0007 CrossRefGoogle Scholar
  30. Wuttke J (2000) Multiple-scattering effects on smooth neutron-scattering spectra. Phys Rev E 62:6531. doi: 10.1103/PhysRevE.62.6531 CrossRefGoogle Scholar
  31. Wuttke J, Ohl M, Goldammer M, Roth S, Schneider U, Lunkenheimer P, Kahn R, Rufflé B, Lechner R, Berg MA (2000) Propylene carbonate reexamined: mode-coupling beta scaling without factorization? Phys Rev E 61:2730–2740. doi: 10.1103/PhysRevE.61.2730 CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2011

Authors and Affiliations

  • Marie-Sousai Appavou
    • 1
    • 2
    Email author
  • Sebastian Busch
    • 2
    • 3
  • Wolfgang Doster
    • 2
  • Ana Gaspar
    • 2
    • 3
  • Tobias Unruh
    • 2
    • 3
  1. 1.Forschungszentrum Jülich GmbH, Institute for Solid State ResearchJülich Center for Neutron Science at FRM IIGarching bei MünchenGermany
  2. 2.Physik Department E13Technische Universität MünchenGarching bei MünchenGermany
  3. 3.Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II)Technische Universität MünchenGarching bei MünchenGermany

Personalised recommendations