Skip to main content

Advertisement

Log in

Insights into the mechanism of HIV-1 envelope induced membrane fusion as revealed by its inhibitory peptides

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

HIV-1 fusion with its target cells is mediated by the glycoprotein 41 (gp41) transmembrane subunit of the viral envelope glycoprotein (ENV). The current models propose that gp41 undergoes several conformational changes between the apposing viral and cell membranes to facilitate fusion. In this review we focus on the progress that has been made in revealing the dynamic role of the N-terminal heptad repeat (NHR) and the C-terminal heptad repeat (CHR) regions within gp41 to the fusion process. The involvement of these regions in the formation of the gp41 pre-hairpin and hairpin conformations during an ongoing fusion event was mainly discovered by their derived inhibitory peptides. For example, the core structure within the hairpin conformation in a dynamic fusion event is suggested to be larger than its high resolution structure and its minimal boundaries were determined in situ. Also, inhibitory peptides helped reveal the dual contribution of the NHR to the fusion process. Finally, we will also discuss several developments in peptide design that has led to a deeper understanding of the mechanism of viral membrane fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apellaniz B, Nir S, Nieva JL (2009) Distinct mechanisms of lipid bilayer perturbation induced by peptides derived from the membrane-proximal external region of HIV-1 gp41. Biochemistry 48:5320–5331

    Article  PubMed  CAS  Google Scholar 

  • Avrahami D, Shai Y (2002) Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry 41:2254–2263

    Article  PubMed  CAS  Google Scholar 

  • Bar S, Alizon M (2004) Role of the ectodomain of the gp41 transmembrane envelope protein of human immunodeficiency virus type 1 in late steps of the membrane fusion process. J Virol 78:811–820

    Article  PubMed  Google Scholar 

  • Bernstein HB, Tucker SP, Kar SR, McPherson SA, McPherson DT, Dubay JW, Lebowitz J, Compans RW, Hunter E (1995) Oligomerization of the hydrophobic heptad repeat of gp41. J Virol 69:2745–2750

    PubMed  CAS  Google Scholar 

  • Bewley CA, Louis JM, Ghirlando R, Clore GM (2002) Design of a novel peptide inhibitor of HIV fusion that disrupts the internal trimeric coiled-coil of gp41. J Biol Chem 277:14238–14245

    Article  PubMed  CAS  Google Scholar 

  • Bianchi E, Finotto M, Ingallinella P, Hrin R, Carella AV, Hou XS, Schleif WA, Miller MD, Geleziunas R, Pessi A (2005) Covalent stabilization of coiled coils of the HIV gp41 N region yields extremely potent and broad inhibitors of viral infection. Proc Natl Acad Sci USA 102:12903–12908

    Article  PubMed  CAS  Google Scholar 

  • Biron Z, Khare S, Quadt SR, Hayek Y, Naider F, Anglister J (2005) The 2F5 epitope is helical in the HIV-1 entry inhibitor T-20. Biochemistry 44:13602–13611

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal R, Clague MJ, Durell SR, Epand RM (2003) Membrane fusion. Chem Rev 103:53–69

    Article  PubMed  CAS  Google Scholar 

  • Briz V, Poveda E, Soriano V (2006) HIV entry inhibitors: mechanisms of action and resistance pathways. J Antimicrob Chemother 57:619–627

    Article  PubMed  CAS  Google Scholar 

  • Buzon V, Natrajan G, Schibli D, Campelo F, Kozlov MM, Weissenhorn W (2010) Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions. PLoS Pathog 6:e1000880

    Article  PubMed  Google Scholar 

  • Caffrey M, Cai M, Kaufman J, Stahl SJ, Wingfield PT, Covell DG, Gronenborn AM, Clore GM (1998) Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J 17:4572–4584

    Article  PubMed  CAS  Google Scholar 

  • Caffrey M, Kaufman J, Stahl S, Wingfield P, Gronenborn AM, Clore GM (1999) Monomer-trimer equilibrium of the ectodomain of SIV gp41: insight into the mechanism of peptide inhibition of HIV infection. Protein Sci 8:1904–1907

    Article  PubMed  CAS  Google Scholar 

  • Center RJ, Leapman RD, Lebowitz J, Arthur LO, Earl PL, Moss B (2002) Oligomeric structure of the human immunodeficiency virus type 1 envelope protein on the virion surface. J Virol 76:7863–7867

    Article  PubMed  CAS  Google Scholar 

  • Chan DC, Chutkowski CT, Kim PS (1998) Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc Natl Acad Sci USA 95:15613–15617

    Article  PubMed  CAS  Google Scholar 

  • Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273

    Article  PubMed  CAS  Google Scholar 

  • Chan DC, Kim PS (1998) HIV entry and its inhibition. Cell 93:681–684

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72:175–207

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik LV, Kozlov MM (2005) Membrane hemifusion: crossing a chasm in two leaps. Cell 123:375–382

    Article  PubMed  CAS  Google Scholar 

  • Clapham PR, McKnight A (2002) Cell surface receptors, virus entry and tropism of primate lentiviruses. J Gen Virol 83:1809–1829

    PubMed  CAS  Google Scholar 

  • Cocchi F, Des Vico AL, Garzino-Demo A, Cara A, Gallo RC, Lusso P (1996) The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nat Med 2:1244–1247

    Article  PubMed  CAS  Google Scholar 

  • Colman PM, Lawrence MC (2003) The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 4:309–319

    Article  PubMed  CAS  Google Scholar 

  • Cooper DA, Lange JM (2004) Peptide inhibitors of virus-cell fusion: enfuvirtide as a case study in clinical discovery and development. Lancet Infect Dis 4:426–436

    Article  PubMed  CAS  Google Scholar 

  • Curtain C, Separovic F, Nielsen K, Craik D, Zhong Y, Kirkpatrick A (1999) The interactions of the N-terminal fusogenic peptide of HIV-1 gp41 with neutral phospholipids. Eur Biophys J 28:427–436

    Article  PubMed  CAS  Google Scholar 

  • Dedera D, Gu RL, Ratner L (1992) Conserved cysteine residues in the human immunodeficiency virus type 1 transmembrane envelope protein are essential for precursor envelope cleavage. J Virol 66:1207–1209

    PubMed  CAS  Google Scholar 

  • Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85:1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Durell SR, Martin I, Ruysschaert JM, Shai Y, Blumenthal R (1997) What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review). Mol Membr Biol 14:97–112

    Article  PubMed  CAS  Google Scholar 

  • Dwyer JJ, Hasan A, Wilson KL, White JM, Matthews TJ, Delmedico MK (2003) The hydrophobic pocket contributes to the structural stability of the N-terminal coiled coil of HIV gp41 but is not required for six-helix bundle formation. Biochemistry 42:4945–4953

    Article  PubMed  CAS  Google Scholar 

  • Eckert DM, Kim PS (2001a) Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region. Proc Natl Acad Sci USA 98:11187–11192

    Article  PubMed  CAS  Google Scholar 

  • Eckert DM, Kim PS (2001b) Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 70:777–810

    Article  PubMed  CAS  Google Scholar 

  • Eggink D, Langedijk JP, Bonvin AM, Deng Y, Lu M, Berkhout B, Sanders RW (2009) Detailed mechanistic insights into HIV-1 sensitivity to three generations of fusion inhibitors. J Biol Chem 284:26941–26950

    Article  PubMed  CAS  Google Scholar 

  • Epand RM (2003) Fusion peptides and the mechanism of viral fusion. Biochim Biophys Acta 1614:116–121

    Article  PubMed  CAS  Google Scholar 

  • Finzi A, Xiang SH, Pacheco B, Wang L, Haight J, Kassa A, Danek B, Pancera M, Kwong PD, Sodroski J (2010) Topological layers in the HIV-1 gp120 inner domain regulate gp41 interaction and CD4-triggered conformational transitions. Mol Cell 37:656–667

    Article  PubMed  CAS  Google Scholar 

  • Freed EO, Delwart EL, Buchschacher GL Jr, Panganiban AT (1992) A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc Natl Acad Sci USA 89:70–74

    Article  PubMed  CAS  Google Scholar 

  • Furuta RA, Wild CT, Weng Y, Weiss CD (1998) Capture of an early fusion-active conformation of HIV-1 gp41. Nat Struct Biol 5:276–279

    Article  PubMed  CAS  Google Scholar 

  • Gallaher WR (1987) Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell 50:327–328

    Article  PubMed  CAS  Google Scholar 

  • Gallo SA, Puri A, Blumenthal R (2001) HIV-1 gp41 six-helix bundle formation occurs rapidly after the engagement of gp120 by CXCR4 in the HIV-1 Env-mediated fusion process. Biochemistry 40:12231–12236

    Article  PubMed  CAS  Google Scholar 

  • Gallo SA, Finnegan CM, Viard M, Raviv Y, Dimitrov A, Rawat SS, Puri A, Durell S, Blumenthal R (2003) The HIV Env-mediated fusion reaction. Biochim Biophys Acta 1614:36–50

    Article  PubMed  CAS  Google Scholar 

  • Gerber D, Pritsker M, Gunther-Ausborn S, Johnson B, Blumenthal R, Shai Y (2004) Inhibition of HIV-1 envelope glycoprotein-mediated cell fusion by a DL-amino acid-containing fusion peptide: possible recognition of the fusion complex. J Biol Chem 279:48224–48230

    Article  PubMed  CAS  Google Scholar 

  • Gochin M, Cai L (2009) The role of amphiphilicity and negative charge in glycoprotein 41 interactions in the hydrophobic pocket. J Med Chem 52:4338–4344

    Article  PubMed  CAS  Google Scholar 

  • Harrison SC (2008) Viral membrane fusion. Nat Struct Mol Biol 15:690–698

    Article  PubMed  CAS  Google Scholar 

  • He Y, Cheng J, Li J, Qi Z, Lu H, Dong M, Jiang S, Dai Q (2008a) Identification of a critical motif for the human immunodeficiency virus type 1 (HIV-1) gp41 core structure: implications for designing novel anti-HIV fusion inhibitors. J Virol 82:6349–6358

    Article  PubMed  CAS  Google Scholar 

  • He Y, Liu S, Li J, Lu H, Qi Z, Liu Z, Debnath AK, Jiang S (2008b) Conserved salt bridge between the N- and C-terminal heptad repeat regions of the human immunodeficiency virus type 1 gp41 core structure is critical for virus entry and inhibition. J Virol 82:11129–11139

    Article  PubMed  CAS  Google Scholar 

  • Ingallinella P, Bianchi E, Ladwa NA, Wang YJ, Hrin R, Veneziano M, Bonelli F, Ketas TJ, Moore JP, Miller MD, Pessi A (2009) Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proc Natl Acad Sci USA 106:5801–5806

    Article  PubMed  CAS  Google Scholar 

  • Jacobs A, Quraishi O, Huang X, Bousquet-Gagnon N, Nault G, Francella N, Alvord WG, Pham N, Soucy C, Robitaille M, Bridon D, Blumenthal R (2007) A covalent inhibitor targeting an intermediate conformation of the fusogenic subunit of the HIV-1 envelope complex. J Biol Chem 282:32406–32413

    Article  PubMed  CAS  Google Scholar 

  • Ji H, Shu W, Burling FT, Jiang S, Lu M (1999) Inhibition of human immunodeficiency virus type 1 infectivity by the gp41 core: role of a conserved hydrophobic cavity in membrane fusion. J Virol 73:8578–8586

    PubMed  CAS  Google Scholar 

  • Jiang S, Lin K, Strick N, Neurath AR (1993) HIV-1 inhibition by a peptide. Nature 365:113

    Article  PubMed  CAS  Google Scholar 

  • Judice JK, Tom JY, Huang W, Wrin T, Vennari J, Petropoulos CJ, McDowell RS (1997) Inhibition of HIV type 1 infectivity by constrained alpha-helical peptides: implications for the viral fusion mechanism. Proc Natl Acad Sci USA 94:13426–13430

    Article  PubMed  CAS  Google Scholar 

  • Kliger Y, Shai Y (2000) Inhibition of HIV-1 entry before gp41 folds into its fusion-active conformation. J Mol Biol 295:163–168

    Article  PubMed  CAS  Google Scholar 

  • Kliger Y, Aharoni A, Rapaport D, Jones P, Blumenthal R, Shai Y (1997) Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell Fusion. Structure-function study. J Biol Chem 272:13496–13505

    Article  PubMed  CAS  Google Scholar 

  • Kliger Y, Gallo SA, Peisajovich SG, Munoz-Barroso I, Avkin S, Blumenthal R, Shai Y (2001) Mode of action of an antiviral peptide from HIV-1. Inhibition at a post-lipid mixing stage. J Biol Chem 276:1391–1397

    Article  PubMed  CAS  Google Scholar 

  • Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659

    Article  PubMed  CAS  Google Scholar 

  • LaBranche CC, Galasso G, Moore JP, Bolognesi DP, Hirsch MS, Hammer SM (2001) HIV fusion and its inhibition. Antiviral Res 50:95–115

    Article  PubMed  CAS  Google Scholar 

  • Lau WL, Ege DS, Lear JD, Hammer DA, De Grado WF (2004) Oligomerization of fusogenic peptides promotes membrane fusion by enhancing membrane destabilization. Biophys J 86:272–284

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Lu H, Niu J, Xu Y, Wu S, Jiang S (2005) Different from the HIV fusion inhibitor C34, the anti-HIV drug fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120. J Biol Chem 280:11259–11273

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Jing W, Cheung B, Lu H, Sun J, Yan X, Niu J, Farmar J, Wu S, Jiang S (2007a) HIV gp41 C-terminal heptad repeat contains multifunctional domains. Relation to mechanisms of action of anti-HIV peptides. J Biol Chem 282:9612–9620

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Wu S, Jiang S (2007b) HIV entry inhibitors targeting gp41: from polypeptides to small-molecule compounds. Curr Pharm Des 13:143–162

    Article  PubMed  CAS  Google Scholar 

  • Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci USA 103:15997–16002

    Article  PubMed  CAS  Google Scholar 

  • Malina A, Shai Y (2005) Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Biochem J 390:695–702

    Article  PubMed  CAS  Google Scholar 

  • Markosyan RM, Cohen FS, Melikyan GB (2003) HIV-1 Envelope proteins complete their folding into six-helix bundles immediately after fusion pore formation. Mol Biol Cell 14:926–938

    Article  PubMed  CAS  Google Scholar 

  • Melikyan GB, Markosyan RM, Hemmati H, Delmedico MK, Lambert DM, Cohen FS (2000) Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol 151:413–423

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi K, Kozlov MM, Melikyan GB (2009) Early steps of HIV-1 fusion define the sensitivity to inhibitory peptides that block 6-helix bundle formation. PLoS Pathog 5:e1000585

    Article  PubMed  Google Scholar 

  • Mohler WA, Shemer G, del Campo JJ, Valansi C, Opoku-Serebuoh E, Scranton V, Assaf N, White JG, Podbilewicz B (2002) The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev Cell 2:355–362

    Article  PubMed  CAS  Google Scholar 

  • Moreno MR, Pascual R, Villalain J (2004) Identification of membrane-active regions of the HIV-1 envelope glycoprotein gp41 using a 15-mer gp41-peptide scan. Biochim Biophys Acta 1661:97–105

    Article  PubMed  CAS  Google Scholar 

  • Nieva JL, Nir S, Muga A, Goni FM, Wilschut J (1994) Interaction of the HIV-1 fusion peptide with phospholipid vesicles: different structural requirements for fusion and leakage. Biochemistry 33:3201–3209

    Article  PubMed  CAS  Google Scholar 

  • Okumura Y, Yano M, Murakami M, Mori S, Towatari T, Kido H (1999) The extracellular processing of HIV-1 envelope glycoprotein gp160 by human plasmin. FEBS Lett 442:39–42

    Article  PubMed  CAS  Google Scholar 

  • Owman C, Garzino-Demo A, Cocchi F, Popovic M, Sabirsh A, Gallo RC (1998) The leukotriene B4 receptor functions as a novel type of coreceptor mediating entry of primary HIV-1 isolates into CD4-positive cells. Proc Natl Acad Sci USA 95:9530–9534

    Article  PubMed  CAS  Google Scholar 

  • Peisajovich SG, Gallo SA, Blumenthal R, Shai Y (2003) C-terminal octylation rescues an inactive T20 mutant—implications for the mechanism of HIV/simian immunodeficiency virus-induced membrane fusion. J Biol Chem 278:21012–21017

    Article  PubMed  CAS  Google Scholar 

  • Poranen MM, Daugelavicius R, Bamford DH (2002) Common principles in viral entry. Annu Rev Microbiol 56:521–538

    Article  PubMed  CAS  Google Scholar 

  • Rafalski M, Lear JD, De Grado WF (1990) Phospholipid interactions of synthetic peptides representing the N-terminus of HIV gp41. Biochemistry 29:7917–7922

    Article  PubMed  CAS  Google Scholar 

  • Rapaport D, Ovadia M, Shai Y (1995) A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus-cell fusion: an emerging similarity with functional domains of other viruses. EMBO J 14:5524–5531

    PubMed  CAS  Google Scholar 

  • Reichert J, Grasnick D, Afonin S, Buerck J, Wadhwani P, Ulrich AS (2007) A critical evaluation of the conformational requirements of fusogenic peptides in membranes. Eur Biophys J 36:405–413

    Article  PubMed  CAS  Google Scholar 

  • Rimsky LT, Shugars DC, Matthews TJ (1998) Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J Virol 72:986–993

    PubMed  CAS  Google Scholar 

  • Rizzuto CD, Wyatt R, Hernandez-Ramos N, Sun Y, Kwong PD, Hendrickson WA, Sodroski J (1998) A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 280:1949–1953

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE, Orci L (1992) Molecular dissection of the secretory pathway. Nature 355:409–415

    Article  PubMed  CAS  Google Scholar 

  • Sackett K, Shai Y (2003) How structure correlates to function for membrane associated HIV-1 gp41 constructs corresponding to the N-terminal half of the ectodomain. J Mol Biol 333:47–58

    Article  PubMed  CAS  Google Scholar 

  • Sal-Man N, Gerber D, Shai Y (2004) Hetero-assembly between all-L- and all-D-amino acid transmembrane domains: forces involved and implication for inactivation of membrane proteins. J Mol Biol 344:855–864

    Article  PubMed  CAS  Google Scholar 

  • Salzwedel K, West JT, Hunter E (1999) A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J Virol 73:2469–2480

    PubMed  CAS  Google Scholar 

  • Sanchez-Martinez S, Lorizate M, Katinger H, Kunert R, Nieva JL (2006) Membrane association and epitope recognition by HIV-1 neutralizing anti-gp41 2F5 and 4E10 antibodies. AIDS Res Hum Retroviruses 22:998–1006

    Article  PubMed  CAS  Google Scholar 

  • Skehel JJ, Wiley DC (1998) Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95:871–874

    Article  PubMed  CAS  Google Scholar 

  • Sollner TH (2004) Intracellular and viral membrane fusion: a uniting mechanism. Curr Opin Cell Biol 16:429–435

    Article  PubMed  CAS  Google Scholar 

  • Tan K, Liu J, Wang J, Shen S, Lu M (1997) Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci USA 94:12303–12308

    Article  PubMed  CAS  Google Scholar 

  • Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430

    Article  PubMed  CAS  Google Scholar 

  • Weissenhorn W, Dessen A, Calder LJ, Harrison SC, Skehel JJ, Wiley DC (1999) Structural basis for membrane fusion by enveloped viruses. Mol Membr Biol 16:3–9

    Article  PubMed  CAS  Google Scholar 

  • Wexler-Cohen Y, Shai Y (2007) Demonstrating the C-terminal boundary of the HIV 1 fusion conformation in a dynamic ongoing fusion process and implication for fusion inhibition. Faseb J 21:3677–3684

    Article  PubMed  CAS  Google Scholar 

  • Wexler-Cohen Y, Shai Y (2009) Membrane-anchored HIV-1 N-heptad repeat peptides are highly potent cell fusion inhibitors via an altered mode of action. PLoS Pathog 5:e1000509

    Article  PubMed  Google Scholar 

  • Wexler-Cohen Y, Johnson BT, Puri A, Blumenthal R, Shai Y (2006) Structurally altered peptides reveal an important role for N-terminal heptad repeat binding and stability in the inhibitory action of HIV-1 peptide DP178. J Biol Chem 281:9005–9010

    Article  PubMed  CAS  Google Scholar 

  • Wexler-Cohen Y, Ashkenazi A, Viard M, Blumenthal R, Shai Y (2010) Virus-cell and cell-cell fusion mediated by the HIV-1 envelope glycoprotein is inhibited by short gp41 N-terminal membrane-anchored peptides lacking the critical pocket domain. Faseb J 24:4196–4202

    Article  PubMed  CAS  Google Scholar 

  • White JM (1992) Membrane fusion. Science 258:917–924

    Article  PubMed  CAS  Google Scholar 

  • Wild C, Oas T, McDanal C, Bolognesi D, Matthews T (1992) A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci USA 89:10537–10541

    Article  PubMed  CAS  Google Scholar 

  • Zolla-Pazner S (2004) Identifying epitopes of HIV-1 that induce protective antibodies. Nat Rev Immunol 4:199–210

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Yechiel Shai has The Harold S. and Harriet B. Brady Professorial Chair in Cancer Research. This study was supported by the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yechiel Shai.

Additional information

Membrane-active peptides: 455th WE-Heraeus-Seminar and AMP 2010 Workshop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkenazi, A., Shai, Y. Insights into the mechanism of HIV-1 envelope induced membrane fusion as revealed by its inhibitory peptides. Eur Biophys J 40, 349–357 (2011). https://doi.org/10.1007/s00249-010-0666-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0666-z

Keywords

Navigation