Skip to main content

Advertisement

Log in

HIV gp41 six-helix bundle constructs induce rapid vesicle fusion at pH 3.5 and little fusion at pH 7.0: understanding pH dependence of protein aggregation, membrane binding, and electrostatics, and implications for HIV-host cell fusion

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The HIV gp41 protein catalyzes fusion between HIV and target cell membranes. The fusion states of the gp41 ectodomain include early coiled-coil (CC) structure and final six-helix bundle (SHB) structure. The ectodomain has an additional N-terminal apolar fusion peptide (FP) sequence which binds to target cell membranes and plays a critical role in fusion. One approach to understanding gp41 function is study of vesicle fusion induced by constructs that encompass various regions of gp41. There are apparent conflicting literature reports of either rapid or no fusion of negatively charged vesicles by SHB constructs. These reports motivated the present study, which particularly focused on effects of pH because the earlier high and no fusion results were at pH 3.0 and 7.2, respectively. Constructs include “Hairpin,” which has SHB structure but lacks the FP, “FP-Hairpin” with FP + SHB, and “N70,” which contains the FP and part of the CC but does not have SHB structure. Aqueous solubility, membrane binding, and vesicle fusion function were measured at a series of pHs and much of the pH dependences of these properties were explained by protein charge. At pH 3.5, all constructs were positively charged, bound negatively charged vesicles, and induced rapid fusion. At pH 7.0, N70 remained positively charged and induced rapid fusion, whereas Hairpin and FP-Hairpin were negatively charged and induced no fusion. Because viral entry occurs near pH 7 rather than pH 3, our results are consistent with fusogenic function of early CC gp41 and with fusion arrest by final SHB gp41.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3a–d
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Chol:

Cholesterol

CHR:

C-terminal heptad repeat

FP:

Fusion peptide

LUV:

Large unilamellar vesicle

MPER:

Membrane-proximal external region

NCL:

Native chemical ligation

NHR:

N-terminal heptad repeat

N-dansyl-DOPE:

N-(5-dimethylamino-1-naphthalenesulfonyl) (ammonium salt) dioleoylphosphatidylethanolamine

N-NBD-DPPE:

N-(7-nitro-2,1,3-benzoxadiazol-4-yl) (ammonium salt) dipalmitoylphosphatidylethanolamine

N-Rh-DPPE:

N-(lissamine rhodamine B sulfonyl) (ammonium salt) dipalmitoylphosphatidylethanolamine

N-PHI:

N-terminal half of the pre-hairpin intermediate

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PHI:

Pre-hairpin intermediate

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

POPG:

1-Palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt)

PS:

Phosphatidylserine

RP-HPLC:

Reverse phase–high performance liquid chromatography

SHB:

Six-helix bundle

Sph:

Sphingomyelin

TCEP:

Tris(2-carboxyethyl) phosphine hydrochloride

References

  • Aloia RC, Tian H, Jensen FC (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci USA 90:5181–5185

    Article  PubMed  CAS  Google Scholar 

  • Bewley CA, Louis JM, Ghirlando R, Clore GM (2002) Design of a novel peptide inhibitor of HIV fusion that disrupts the internal trimeric coiled-coil of gp41. J Biol Chem 277:14238–14245

    Article  PubMed  CAS  Google Scholar 

  • Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, Frutiger S, Hochstrasser D (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14:1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich HG (2006) The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci USA 103:2641–2646

    Article  PubMed  Google Scholar 

  • Caffrey M, Cai M, Kaufman J, Stahl SJ, Wingfield PT, Covell DG, Gronenborn AM, Clore GM (1998) Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J 17:4572–4584

    Article  PubMed  CAS  Google Scholar 

  • Callahan MK, Popernack PM, Tsutsui S, Truong L, Schlegel RA, Henderson AJ (2003) Phosphatidylserine on HIV envelope is a cofactor for infection of monocytic cells. J Immunol 170:4840–4845

    PubMed  CAS  Google Scholar 

  • Center RJ, Leapman RD, Lebowitz J, Arthur LO, Earl PL, Moss B (2002) Oligomeric structure of the human immunodeficiency virus type 1 envelope protein on the virion surface. J Virol 76:7863–7867

    Article  PubMed  CAS  Google Scholar 

  • Chan DC, Kim PS (1998) HIV entry and its inhibition. Cell 93:681–684

    Article  PubMed  CAS  Google Scholar 

  • Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273

    Article  PubMed  CAS  Google Scholar 

  • Cheng SF, Chien MP, Lin CH, Chang CC, Lin CH, Liu YT, Chang DK (2010) The fusion peptide domain is the primary membrane-inserted region and enhances membrane interaction of the ectodomain of HIV-1 gp41. Mol Membr Biol 27:31–44

    Article  Google Scholar 

  • Chernomordik LV, Zimmerberg J, Kozlov MM (2006) Membranes of the world unite! J Cell Biol 175:201–207

    Article  PubMed  CAS  Google Scholar 

  • Curtis-Fisk J, Preston C, Zheng ZX, Worden RM, Weliky DP (2007) Solid-state NMR structural measurements on the membrane-associated influenza fusion protein ectodomain. J Am Chem Soc 129:11320–11321

    Article  PubMed  CAS  Google Scholar 

  • Curtis-Fisk J, Spencer RM, Weliky DP (2008) Isotopically labeled expression in E. coli, purification, and refolding of the full ectodomain of the influenza virus membrane fusion protein. Protein Expr Purif 61:212–219

    Article  PubMed  CAS  Google Scholar 

  • Durell SR, Martin I, Ruysschaert JM, Shai Y, Blumenthal R (1997) What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review). Mol Membr Biol 14:97–112

    Article  PubMed  CAS  Google Scholar 

  • Epand RF, Macosko JC, Russell CJ, Shin YK, Epand RM (1999) The ectodomain of HA2 of influenza virus promotes rapid pH dependent membrane fusion. J Mol Biol 286:489–503

    Article  PubMed  CAS  Google Scholar 

  • Furuta RA, Wild CT, Weng Y, Weiss CD (1998) Capture of an early fusion-active conformation of HIV-1 gp41. Nat Struct Biol 5:276–279

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker J (ed) The proteomics protocols handbook. Humana, Totowa, NJ

  • Grewe C, Beck A, Gelderblom HR (1990) HIV: early virus-cell interactions. J AIDS 3:965–974

    CAS  Google Scholar 

  • Han X, Bushweller JH, Cafiso DS, Tamm LK (2001) Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol 8:715–720

    Article  PubMed  CAS  Google Scholar 

  • Jaroniec CP, Kaufman JD, Stahl SJ, Viard M, Blumenthal R, Wingfield PT, Bax A (2005) Structure and dynamics of micelle-associated human immunodeficiency virus gp41 fusion domain. Biochemistry 44:16167–16180

    Article  PubMed  CAS  Google Scholar 

  • Johnson EC, Kent SB (2006) Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc 128:6640–6646

    Article  PubMed  CAS  Google Scholar 

  • Jones PL, Korte T, Blumenthal R (1998) Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J Biol Chem 273:404–409

    Article  PubMed  CAS  Google Scholar 

  • Korazim O, Sackett K, Shai Y (2006) Functional and structural characterization of HIV-1 gp41 ectodomain regions in phospholipid membranes suggests that the fusion-active conformation is extended. J Mol Biol 364:1103–1117

    Article  PubMed  CAS  Google Scholar 

  • Lev N, Fridmann-Sirkis Y, Blank L, Bitler A, Epand RF, Epand RM, Shai Y (2009) Conformational stability and membrane interaction of the full-length ectodomain of HIV-1 gp41: implication for mode of action. Biochemistry 48:3166–3175

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Tamm LK (2007) Structure and plasticity of the human immunodeficiency virus gp41 fusion domain in lipid micelles and bilayers. Biophys J 93:876–885

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Ji H, Shen S (1999) Subdomain folding and biological activity of the core structure from human immunodeficiency virus type 1 gp41: implications for viral membrane fusion. J Virol 73:4433–4438

    PubMed  CAS  Google Scholar 

  • Macosko JC, Kim CH, Shin YK (1997) The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. J Mol Biol 267:1139–1148

    Article  PubMed  CAS  Google Scholar 

  • Magnus C, Rusert P, Bonhoeffer S, Trkola A, Regoes RR (2009) Estimating the stoichiometry of human immunodeficiency virus entry. J Virol 83:1523–1531

    Article  PubMed  CAS  Google Scholar 

  • Markosyan RM, Cohen FS, Melikyan GB (2003) HIV-1 envelope proteins complete their folding into six-helix bundles immediately after fusion pore formation. Mol Biol Cell 14:926–938

    Article  PubMed  CAS  Google Scholar 

  • McClure MO, Marsh M, Weiss RA (1988) Human immunodeficiency virus infection of CD4-bearing cells occurs by a pH-independent mechanism. EMBO J 7:513–518

    PubMed  CAS  Google Scholar 

  • Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB (2009) HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137:433–444

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DH, Hildreth JE (2000) Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 74:3264–3272

    Article  PubMed  CAS  Google Scholar 

  • Pan JH, Lai CB, Scott WRP, Straus SK (2010) Synthetic fusion peptides of tick-borne encephalitis virus as models for membrane fusion. Biochemistry 49:287–296

    Article  PubMed  CAS  Google Scholar 

  • Peisajovich SG, Blank L, Epand RF, Epand RM, Shai Y (2003) On the interaction between gp41 and membranes: the immunodominant loop stabilizes gp41 helical hairpin conformation. J Mol Biol 326:1489–1501

    Article  PubMed  CAS  Google Scholar 

  • Pereira FB, Goni FM, Muga A, Nieva JL (1997) Permeabilization and fusion of uncharged lipid vesicles induced by the HIV-1 fusion peptide adopting an extended conformation: dose and sequence effects. Biophys J 73:1977–1986

    Article  PubMed  CAS  Google Scholar 

  • Qiang W, Weliky DP (2009) HIV fusion peptide and its cross-linked oligomers: efficient syntheses, significance of the trimer in fusion activity, correlation of beta strand conformation with membrane cholesterol, and proximity to lipid headgroups. Biochemistry 48:289–301

    Article  PubMed  CAS  Google Scholar 

  • Qiang W, Bodner ML, Weliky DP (2008) Solid-state NMR spectroscopy of human immunodeficiency virus fusion peptides associated with host-cell-like membranes: 2D correlation spectra and distance measurements support a fully extended conformation and models for specific antiparallel strand registries. J Am Chem Soc 130:5459–5471

    Article  PubMed  CAS  Google Scholar 

  • Qiang W, Sun Y, Weliky DP (2009) A strong correlation between fusogenicity and membrane insertion depth of the HIV fusion peptide. Proc Natl Acad Sci USA 106:15314–15319

    Article  PubMed  CAS  Google Scholar 

  • Reichert J, Grasnick D, Afonin S, Buerck J, Wadhwani P, Ulrich AS (2007) A critical evaluation of the conformational requirements of fusogenic peptides in membranes. Eur Biophys J 36:405–413

    Article  PubMed  CAS  Google Scholar 

  • Sackett K, Shai Y (2002) The HIV-1 gp41 N-terminal heptad repeat plays an essential role in membrane fusion. Biochemistry 41:4678–4685

    Article  PubMed  CAS  Google Scholar 

  • Sackett K, Shai Y (2003) How structure correlates to function for membrane associated HIV-1 gp41 constructs corresponding to the N-terminal half of the ectodomain. J Mol Biol 333:47–58

    Article  PubMed  CAS  Google Scholar 

  • Sackett K, Shai Y (2005) The HIV fusion peptide adopts intermolecular parallel beta-sheet structure in membranes when stabilized by the adjacent N-terminal heptad repeat: a 13C FTIR study. J Mol Biol 350:790–805

    Article  PubMed  CAS  Google Scholar 

  • Sackett K, Wexler-Cohen Y, Shai Y (2006) Characterization of the HIV N-terminal fusion peptide-containing region in context of key gp41 fusion conformations. J Biol Chem 281:21755–21762

    Article  PubMed  CAS  Google Scholar 

  • Sackett K, Nethercott MJ, Shai Y, Weliky DP (2009) Hairpin folding of HIV gp41 abrogates lipid mixing function at physiologic pH and inhibits lipid mixing by exposed gp41 constructs. Biochemistry 48:2714–2722

    Article  PubMed  CAS  Google Scholar 

  • Sackett K, Nethercott MJ, Epand RF, Epand RM, Kindra DR, Shai Y, Weliky DP (2010) Comparative analysis of membrane-associated fusion peptide secondary structure and lipid mixing function of HIV gp41 constructs that model the early pre-hairpin intermediate and final hairpin conformations. J Mol Biol 397:301–315

    Article  PubMed  CAS  Google Scholar 

  • Shu W, Liu J, Ji H, Radigen L, Jiang S, Lu M (2000) Helical interactions in the HIV-1 gp41 core reveal structural basis for the inhibitory activity of gp41 peptides. Biochemistry 39:1634–1642

    Article  PubMed  CAS  Google Scholar 

  • Stein BS, Gowda SD, Lifson JD, Penhallow RC, Bensch KG, Engleman EG (1987) pH-independent HIV entry into CD4-positive T-cells via virus envelope fusion to the plasma membrane. Cell 49:659–668

    Article  PubMed  CAS  Google Scholar 

  • Struck DK, Hoekstra D, Pagano RE (1981) Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093–4099

    Article  PubMed  CAS  Google Scholar 

  • Tan K, Liu J, Wang J, Shen S, Lu M (1997) Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci USA 94:12303–12308

    Article  PubMed  CAS  Google Scholar 

  • Tocanne JF, Teissie J (1990) Ionization of phospholipids and phospholipid-supported interfacial lateral diffusion of protons in membrane model systems. Biochim Biophys Acta 1031:111–142

    PubMed  CAS  Google Scholar 

  • Tsui FC, Ojcius DM, Hubbell WL (1986) The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. Biophys J 49:459–468

    Article  PubMed  CAS  Google Scholar 

  • Walter A, Steer CJ, Blumenthal R (1986) Polylysine induces pH-dependent fusion of acidic phospholipid vesicles—a model for polycation-induced fusion. Biochim Biophys Acta 861:319–330

    Article  PubMed  CAS  Google Scholar 

  • Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430

    Article  PubMed  CAS  Google Scholar 

  • White JM, Delos SE, Brecher M, Schornberg K (2008) Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43:189–219

    Article  PubMed  CAS  Google Scholar 

  • Winiski AP, McLaughlin AC, McDaniel RV, Eisenberg M, McLaughlin S (1986) An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers. Biochemistry 25:8206–8214

    Article  PubMed  CAS  Google Scholar 

  • Wu PG, Brand L (1994) Resonance energy transfer—methods and applications. Anal Biochem 218:1–13

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Weliky DP (2003) Solid-state nuclear magnetic resonance evidence for parallel and antiparallel strand arrangements in the membrane-associated HIV-1 fusion peptide. Biochemistry 42:11879–11890

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Gabrys CM, Weliky DP (2001) Solid-state nuclear magnetic resonance evidence for an extended beta strand conformation of the membrane-bound HIV-1 fusion peptide. Biochemistry 40:8126–8137

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Prorok M, Castellino FJ, Weliky DP (2004a) Oligomeric beta-structure of the membrane-bound HIV-1 fusion peptide formed from soluble monomers. Biophys J 87:1951–1963

    Article  PubMed  CAS  Google Scholar 

  • Yang R, Prorok M, Castellino FJ, Weliky DP (2004b) A trimeric HIV-1 fusion peptide construct which does not self-associate in aqueous solution and which has 15-fold higher membrane fusion rate. J Am Chem Soc 126:14722–14723

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Lisa Lapidus is acknowledged for use of the fluorescence spectrometer and the MSU Mass Spectrometry facility is also acknowledged. The work was supported by NIH awards R01AI047153 to D.P.W. and F32AI080136 to K.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Weliky.

Additional information

Membrane-active peptides: 455th WE-Heraeus Seminar and AMP 2010 Workshop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sackett, K., TerBush, A. & Weliky, D.P. HIV gp41 six-helix bundle constructs induce rapid vesicle fusion at pH 3.5 and little fusion at pH 7.0: understanding pH dependence of protein aggregation, membrane binding, and electrostatics, and implications for HIV-host cell fusion. Eur Biophys J 40, 489–502 (2011). https://doi.org/10.1007/s00249-010-0662-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0662-3

Keywords

Navigation