Skip to main content

Advertisement

Log in

Stability of Aβ (1-42) peptide fibrils as consequence of environmental modifications

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

β-Amyloid peptide (Aβ) plays a key role in the pathogenesis of Alzheimer disease (AD). Monomeric Aβ undergoes aggregation, forming oligomers and fibrils, resulting in the deposition of plaques in the brain of AD patients. A widely used protocol for fibril formation in vitro is based on incubation of the peptide at low pH and ionic strength, which generates Aβ fibrils several microns long. What happens to such fibrils once they are brought to physiological pH and ionic strength for biological studies is not fully understood. In this investigation, we show that these changes strongly affect the morphology of fibrils, causing their fragmentation into smaller ones followed by their aggregation into disordered structures. We show that an increase in pH is responsible for fibril fragmentation, while increased ionic strength is responsible for the aggregation of fibril fragments. This behavior was confirmed on different batches of peptide either produced by the same company or of different origin. Similar aggregates of short fibrils are obtained when monomeric peptide is incubated under physiological conditions of pH and ionic strength, suggesting that fibril morphology is independent of the fibrillation protocol but depends on the final chemical environment. This was also confirmed by experiments with cell cultures showing that the toxicity of fibrils with different initial morphology is the same after addition to the medium. This information is of fundamental importance when Aβ fibrils are prepared in vitro at acidic pH and then diluted into physiological buffer for biological investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad A, Muzaffar M, Ingram VM (2009) Ca2+, within the physiological concentrations, selectively accelerates Aβ42 fibril formation and not Aβ40 in vitro. Biochim Biophys Acta 1794:1537–1548

    CAS  PubMed  Google Scholar 

  • Antzutkin ON (2004) Amyloidosis of Alzheimer’s Aβ peptides: solid-state nuclear magnetic resonance, electron paramagnetic resonance, transmission electron microscopy, scanning transmission electron microscopy and atomic force microscopy studies. Magn Reson Chem 42:231–246

    Article  CAS  PubMed  Google Scholar 

  • Arimon M, Díez-Pérez I, Kogan MJ, Durany N, Giralt E et al (2005) Fine structure study of Aβ1-42 fibrillogenesis with atomic force microscopy. FASEB J 19:1344–1346

    CAS  PubMed  Google Scholar 

  • Bravo R, Arimon M, Valle-Delgado JJ, García R, Durany N et al (2008) Sulfated polysaccharides promote the assembly of amyloid β1-42 peptide into stable fibrils of reduced cytotoxicity. J Biol Chem 283:32471–32483

    Article  CAS  PubMed  Google Scholar 

  • Bulbarelli A, Lonati E, Cazzaniga E, Gregori M, Masserini M (2009a) Pin1 affects Tau phosphorylation in response to Aβ oligomers. Mol Cell Neurosci 42:75–80

    Article  CAS  PubMed  Google Scholar 

  • Bulbarelli A, Lonati E, Cazzaniga E, Re F, Sesana S, Barisani D, Sancini G, Mutoh T, Masserini M (2009b) TrkA pathway activation induced by amyloid-beta (Abeta). Mol Cell Neurosci 40:365–373

    Article  CAS  PubMed  Google Scholar 

  • Carrotta R, Manno M, Bulone D, Martorana V, San Biagio PL (2005) Protofibril formation of amyloid β-protein at Low pH via a non-cooperative elongation mechanism. J Biol Chem 280:30001–30008

    Article  CAS  PubMed  Google Scholar 

  • Cazzaniga E, Bulbarelli A, Cassetti A, Lonati E, Re F, Palestini P, Mutoh T, Masserini M (2007) β-Amyloid (25–35) enhances lipid metabolism and protein ubiquitination in cultured neurons. J Neurosci Res 85:2253–2261

    Article  CAS  PubMed  Google Scholar 

  • Chafekar SM, Hoozemans JJ, Zwart R, Baas F, Scheper W (2007) Abeta 1-42 induces mild endoplasmic reticulum stress in an aggregation state-dependent manner. Antioxid Redox Signal 9:2245–2254

    Article  CAS  PubMed  Google Scholar 

  • Chen S-H, Chu B, Nossal R (1981) Scattering techniques applied to supramolecular and non equilibrium systems. Plenum, New York

    Google Scholar 

  • Choucair A, Chakrapani M, Chakravarthy B, Katsaras J, Johnston LJ (2007) Preferential accumulation of Aβ (1-42) on gel phase domains of lipid bilayers: an AFM and fluorescence study. Biochim Biophys Acta 1768:146–154

    Article  CAS  PubMed  Google Scholar 

  • Chromy BA, Nowak RJ, Lambert MP, Viola KL, Chang L et al (2003) Self-Assembly of Aβ1-42 into globular neurotoxins. Biochemistry 42:12749–12760

    Article  CAS  PubMed  Google Scholar 

  • Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053

    Article  CAS  PubMed  Google Scholar 

  • Findeis MA (2007) The role of amyloid β peptide 42 in Alzheimer’s disease. Pharmacol Therapeut 116:266–286

    Article  CAS  Google Scholar 

  • Harnau L, Winkler RG, Reineker P (1996) Dynamic structure factor of semiflexible macromolecules in dilute solution. J Chem Phys 104:6355–6368

    Article  CAS  Google Scholar 

  • Harper JD, Wong SS, Lieber CM, Lansbury PT Jr (1997) Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem Biol 4:119–125

    Article  CAS  PubMed  Google Scholar 

  • Hill SE, Robinson J, Matthews G, Muschol M (2009) Amyloid protofibrils of lysozyme nucleate and grow via oligomer fusion. Biophys J 96:3781–3790

    Article  CAS  PubMed  Google Scholar 

  • Irvine GB, El-Agnaf OM, Shankar GM, Walsh DM (2008) Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol Med 14:451–464

    Article  CAS  PubMed  Google Scholar 

  • Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32:4693–4697

    Article  CAS  PubMed  Google Scholar 

  • Klein WL (2002) Aβ toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41:345–352

    Article  CAS  PubMed  Google Scholar 

  • Koo EH, Lansbury PT Jr, Kelly JW (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci USA 96:9989–9990

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto Y, Lomakin A, Teplow DB, Benedek GB (1998) Temperature dependence of amyloid β-protein fibrillization. Proc Natl Acad Sci USA 95:12277–12282

    Article  CAS  PubMed  Google Scholar 

  • LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid- in Alzheimer’s disease. Nat Rev Neurosci 8:499–509

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Fernandez EJ, Good TA (2007) Role of aggregation conditions in structure, stability, and toxicity of intermediates in the Aβ fibril formation pathway. Protein Sci 16:723–732

    Article  CAS  PubMed  Google Scholar 

  • Lin M-S, Chiu H-M, Fan F-J, Tsai H-T, Wang SS-S et al (2007) Kinetics and enthalpy measurements of interaction between β-amyloid and liposomes by surface plasmon resonance and isothermal titration microcalorimetry. Colloid Surface B 58:231–236

    Article  CAS  Google Scholar 

  • Liu R, Barkhordarian H, Emadi S, Park CB, Sierks MR (2005) Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol Dis 20:74–81

    Article  PubMed  Google Scholar 

  • Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129

    Article  CAS  PubMed  Google Scholar 

  • Lomakin A, Teplow DB, Kirschner DA, Benedek GB (1997) Kinetic theory of fibrillogenesis of amyloid β-protein. Proc Natl Acad Sci USA 94:7942–7947

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo A, Yankner BA (1994) β-Amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci USA 91:12243–12247

    Article  CAS  PubMed  Google Scholar 

  • Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B et al (2005) 3D structure of Alzheimer’s amyloid-beta (1-42) fibrils. Proc Natl Acad Sci USA 102:17342–17347

    Article  CAS  PubMed  Google Scholar 

  • Makin OS, Serpell LC (2005) Structures for amyloid fibrils. FEBS J 272:5950–5961

    Article  CAS  PubMed  Google Scholar 

  • Manzoni C, Colombo L, Messa M, Cagnotto A, Cantù A, Del Favero E, Salmona M (2009) Overcoming synthetic Aβ peptide aging: a new approach to an age-old problem. Amyloid 16:71–80

    Article  CAS  PubMed  Google Scholar 

  • Moretto N, Bolchi A, Rivetti C, Imbimbo BP, Villetti G et al (2007) Conformation-sensitive antibodies against Alzheimer amyloid-β by immunization with a thioredoxin-constrained B-cell epitope peptide. J Biol Chem 282:11436–11445

    Article  CAS  PubMed  Google Scholar 

  • Olsen SN, Andersen KB, Randolph TW, Carpenter JF, Westh P (2009) Role of electrostatic repulsion on colloidal stability of Bacillus halmapalus alpha-amylase. Biochim Biophys Acta 1794:1058–1065

    CAS  PubMed  Google Scholar 

  • Parbhu A, Lin H, Thimm J, Lal R (2002) Imaging real-time aggregation of amyloid β protein (1-42) by atomic force microscopy. Peptides 23:1265–1270

    Article  CAS  PubMed  Google Scholar 

  • Patel D, Henry J, Good T (2006) Attenuation of β-amyloid induced toxicity by sialic acid-conjugated dendrimeric polymers. Biochim Biophys Acta 1760:1802–1809

    CAS  PubMed  Google Scholar 

  • Pecora R (1985) Dynamic light scattering: application of photon correlation spectroscopy. Plenum, New York

    Google Scholar 

  • Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307:262–265

    Article  CAS  PubMed  Google Scholar 

  • Russel WB, Saville DA, Showalter WR (1989) Colloidal dispersion. Cambridge University Press, Cambridge

    Google Scholar 

  • Sahoo B, Nag S, Sengupta P, Maiti S (2009) On the stability of the soluble amyloid aggregates. Biophys J 97:1454–1460

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:A23–A31

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Shen C-L, Murphy RM (1995) Solvent effects on self-assembly of beta-amyloid peptide. Biophys J 69:640–651

    Article  CAS  PubMed  Google Scholar 

  • Sicorello A, Torrassa S, Soldi G, Gianni S, Travaglini-Allocatelli C, Taddei N, Relini A, Chiti F (2009) Agitation and high ionic strength induce amyloidogenesis of a folded PDZ domain in native conditions. Biophys J 96:2289–2298

    Article  CAS  PubMed  Google Scholar 

  • Stine BW Jr, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for Amyloid-β Peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622

    Article  CAS  PubMed  Google Scholar 

  • Tabner BJ, Turnbull S, El-Agnaf OMA, Allsop D (2001) Production of reactive oxygen species from aggregating proteins implicated in Alzheimer’s Disease, Parkinson’s Disease and other neurodegenerative diseases. Curr Top Med Chem 1:507–517

    Article  CAS  PubMed  Google Scholar 

  • Talmard C, Bouzan A, Faller P (2007) Zinc binding to amyloid-β: isothermal titration calorimetry and Zn competition experiments with Zn sensors. Biochemistry 46:13658–13666

    Article  CAS  PubMed  Google Scholar 

  • Taylor M, Moore S, Mayes J, Parkin E, Beeg M, Canovi M, Gobbi M, Mann DMA, Allsop D (2010) Development of a proteolytically stable retro-inverso peptide inhibitor of β-amyloid oligomerization as a potential novel treatment for Alzheimer’s disease. Biochemistry 49:3261–3272

    Article  CAS  PubMed  Google Scholar 

  • Weldon DT, Rogers SD, Ghilardi JR, Finke MP, Cleary JP, O’Hare E et al (1998) Fibrillar β-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosci 18:2161–2173

    CAS  PubMed  Google Scholar 

  • Yagi H, Ban T, Morigaki K, Naiki H, Goto Y (2007) Visualization and classification of amyloid β supramolecular assemblies. Biochemistry 46:15009–15017

    Article  CAS  PubMed  Google Scholar 

  • Yan P, Hu X, Song H, Yin K, Bateman RJ et al (2006) Matrix metalloproteinase-9 degrades amyloid-β fibrils in vitro and compact plaques in situ. J Biol Chem 281:24566–24574

    Article  CAS  PubMed  Google Scholar 

  • Yang Y-L, Kaufman LJ (2009) Rheology and confocal reflectance microscopy as probes of mechanical properties and structure during collagen and collagen/hyaluronan self-assembly. Biophys J 96:1566–1585

    Article  CAS  PubMed  Google Scholar 

  • Zagorski MG, Yang J, Shao H, Ma K, Zeng HN, Hong A (1999) Methodological and chemical factors affecting amyloid β peptide amyloidogenicity. Method Enzymol 309:189–204

    Article  CAS  Google Scholar 

  • Zako T, Sakono M, Hashimoto N, Ihara M, Maeda M (2009) Bovine insulin filaments induced by reducing disulfide bonds show a different morphology, secondary structure, and cell toxicity from intact insulin amyloid fibrils. Biophys J 96:3331–3340

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no 212043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gregori.

Additional information

M. Gregori and V. Cassina contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregori, M., Cassina, V., Brogioli, D. et al. Stability of Aβ (1-42) peptide fibrils as consequence of environmental modifications. Eur Biophys J 39, 1613–1623 (2010). https://doi.org/10.1007/s00249-010-0619-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0619-6

Keywords

Navigation