Skip to main content
Log in

SAXS-data-based structural modeling of DNA–gadolinium complexes fixed in particles of cholesteric liquid-crystalline dispersions

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Structure of cholesteric liquid-crystalline dispersions (CLCDs) formed by double-stranded DNA molecules and treated with gadolinium salts was studied by small-angle X-ray scattering (SAXS). The obtained SAXS data open the way for structural modeling of these complexes to obtain a reasonable explanation for the correlated decrease in amplitude of an abnormal negative band in the circular dichroism (CD) spectra and the characteristic Bragg peak in the experimental small-angle X-ray scattering curves observed on treatment of CLCD by gadolinium salts. Model simulations of different kinds of structural organizations of the DNA–gadolinium complex were performed using novel SAXS data analysis methods in combination with several new, complementary modeling techniques, enabling us to build low-resolution three-dimensional structural models of DNA–gadolinium complexes fixed in CLCD particles. The obtained models allow us to suggest that a change takes place in the helical twist of quasinematic layers formed by these molecules at high concentrations of gadolinium salt. This change in the twist can be used to explain the experimentally observed increase in amplitude of an abnormal band in the CD spectra of DNA CLCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CLCDs:

Cholesteric liquid-crystalline dispersions

CD:

Circular dichroism

SAXS:

Experimental small-angle X-ray scattering

References

  • Belyakov VA, Orlov VP, Semenov SV, Skuridin SG, Yevdokimov YuM (1996) Comparison of calculated and observed CD spectra of liquid crystalline dispersions formed from double-stranded DNA and from DNA complexes with coloured compounds. Liq Cryst 20:777–784

    Article  CAS  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  CAS  PubMed  Google Scholar 

  • Bouligand Y (1978) Liquid crystalline order in biological materials. In: Blumstein A (ed) Liquid crystalline order on polymers. Academic, New York, pp 262–297

    Google Scholar 

  • De Vries H (1951) Rotary power and other optical properties of certain liquid crystals. Liq Cryst 4:219–226

    Google Scholar 

  • Gottarelli G, Spada GP (1994) Application of CD to study of some cholesteric mesophases. In: Nakanishi K, Beroua N, Woody RW (eds) Circular dichroism. Principles and applications. VCH, New York, pp 105–119

    Google Scholar 

  • Grasso D, Fasone S, La Rosa C, Salyanov V (1991) A calorimetric study of different thermal behaviour of DNA in the isotropic and liquid-crystalline states. Liq Cryst 9:299

    Article  CAS  Google Scholar 

  • Grasso D, Gabriele-Campisi R, La Rosa C (1992) Microcalorimetric measurements of thermal denaturation and renaturation processes of salmon sperm DNA in gel and liquid-crystalline phases. Thermochimica Acta 199:239

    Article  CAS  Google Scholar 

  • Gruenwedel DW, Cruikshank MK (1991) Changes in poly [d(T − G)] × d(C − A)] chirality due to Hg(II)-binding: circular dichroism (CD) studies. J Inorg Biochem 43:29

    Article  CAS  PubMed  Google Scholar 

  • Haertle T, Augustyniak J, Guschlbauer W (1981) Is Tb3+ fluorescence enhancement only due to binding to single stranded polynucleotides? Nucl Acids Res 9:6191

    Article  CAS  PubMed  Google Scholar 

  • Keller D, Bustamante CJ (1986) Theory of interaction of light with large inhomogeneous molecular addregates. II. Psi-type dichroism. J Chem Phys 84:2972–2980

    Article  CAS  Google Scholar 

  • Kim M, Ulibarri L, Keller D, Maestre MF, Bustamante C (1986) The psi-type dichroism of large molecular aggregates. III. Calculations. J Chem Phys 84:2981–2989

    Article  CAS  Google Scholar 

  • Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282

    Article  CAS  Google Scholar 

  • Li L, Yang J, Wu X, Sun C, Zhou G (2003) Study of the co-luminescence effect of terbium-gadolinium-nucleic acids-cetylpyridine bromide system. J Luminescence 101:141

    Article  CAS  Google Scholar 

  • Rosetto FE, Nieboer E (1994) The interaction of metal ions with synthetic DNA: induction of conformational and structural transitions. J Inorg Biochem 54:167

    Article  Google Scholar 

  • Salyanov VI, Evseev AI, Popenko VI, Gasanov AA, Dembo KA, Kondrashina OV, Shtykova EV, Yevdokimov YuM (2007) Gadolinium complexes of linear and liquid-crystalline DNA. Biophysic 52:288

    Google Scholar 

  • Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495

    Article  Google Scholar 

  • Svergun DI, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Cryst 28:768

    Article  CAS  Google Scholar 

  • Vainshtein BK (1966) Diffraction of X-rays by chain molecules. Elsevier, Amsterdam-London-New York

    Google Scholar 

  • Yevdokimov YuM, Sythev VV (2007) Nanotechnology and nucleic acids. Open Nanosci J 1:19–31

    CAS  Google Scholar 

  • Yevdokimov YuM, Sythev VV (2008) Principles of the design of nanostructures with nucleic acid molecules as building blocks. Russ Chem Rev 77:193–204

    Article  CAS  Google Scholar 

  • Yevdokimov YuM, Skuridin SG, Lortkipanidze GB (1992) Liquid-crystalline dispersions of nucleic acids. Liq Crystals 12:1–16

    Article  Google Scholar 

  • Yevdokimov YuM, Skuridin SG, Nechipurenko YuD, Zakharov MA, Salyanov VI, Kurnosov AA, Kuznetsov VD, Nikiforov VN (2005) Nonconstruction based on double-stranded nucleic acids. Int J Biol Macromol 36:103–115

    Article  CAS  PubMed  Google Scholar 

  • Yevdokimov YuM, Salyanov VI, Kondrashina OV, Gasanov AA, Shtykova EV, Dembo KA (2007) Rare-earth-cation-induced change in the cholesteric twisting of neighboring nucleic acid molecules. J Exp Theor Phy 104(N):3–499

    Google Scholar 

  • Yevdokimov YuM, Salyanov VI, Shtykova EV, Dembo KA, Volkov VV, Spirin PV, Slusheva AS, Prassolov VS (2008) A transition in DNA molecule’s spatial ordering due to nano-scale structures changes. Open Nanosci J 2:17–28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported, in part, by the European Union FP6 Infrastructures Program (Design Study SAXIER, RIDS 011934) and by a grant from the Leading Scientific School Program (1955.2008.2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Shtykova or V. V. Volkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shtykova, E.V., Volkov, V.V., Salyanov, V.I. et al. SAXS-data-based structural modeling of DNA–gadolinium complexes fixed in particles of cholesteric liquid-crystalline dispersions. Eur Biophys J 39, 1313–1322 (2010). https://doi.org/10.1007/s00249-010-0584-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0584-0

Keywords

Navigation