Skip to main content

Advertisement

Log in

Effects of a lipid environment on the fibrillogenic pathway of the N-terminal polypeptide of human apolipoprotein A-I, responsible for in vivo amyloid fibril formation

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In amyloidosis associated with apolipoprotein A-I (ApoA-I), heart amyloid deposits are mainly constituted by the 93-residue ApoA-I N-terminal region. A recombinant form of the amyloidogenic polypeptide, named [1-93]ApoA-I, shares conformational properties and aggregation propensity with its natural counterpart. The polypeptide, predominantly in a random coil state at pH 8.0, following acidification to pH 4.0 adopts a helical/molten globule transient state, which leads to formation of aggregates. Here we provide evidence that fibrillogenesis occurs also in physiologic-like conditions. At pH 6.4, [1-93]ApoA-I was found to assume predominantly an α-helical state, which undergoes aggregation at 37°C over time at a lower rate than at pH 4.0. After 7 days at pH 6.4, protofibrils were observed by atomic force microscopy (AFM). Using a multidisciplinary approach, including circular dichroism (CD), fluorescence, electrophoretic, and AFM analyses, we investigated the effects of a lipid environment on the conformational state and aggregation propensity of [1-93]ApoA-I. Following addition of the lipid-mimicking detergent Triton X-100, the polypeptide was found to be in a helical state at both pH 8.0 and 6.4, with no conformational transition occurring upon acidification. These helical conformers are stable and do not generate aggregated species, as observed by AFM after 21 days. Similarly, analyses of the effects of cholesterol demonstrated that this natural ApoA-I ligand induces formation of α-helix at physiological concentrations at both pH 8.0 and 6.4. Zwitterionic, positively charged, and negatively charged liposomes were found to affect [1-93]ApoA-I conformation, inducing helical species. Our data support the idea that lipids play a key role in [1-93]ApoA-I aggregation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

ANS:

8-Anilino-1-naphthalenesulfonate

ApoA-I:

Apolipoprotein A-I

[1-93]ApoA-I:

Recombinant 93-residue N-terminal fragment of ApoA-I

CD:

Circular dichroism

DOTAP:

1,2,-Dioleoyl-3-trimethylammonium-propane

GST:

Glutathione-S-transferase

HDL:

High-density lipoproteins

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

POPS:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine

ThT:

Thioflavin T

References

  • Abedini A, Raleigh DP (2009a) A role for helical intermediates in amyloid formation by natively unfolded polypeptides? Phys Biol 6:1–6

    Article  Google Scholar 

  • Abedini A, Raleigh DP (2009b) A critical assessment of the role of helical intermediates in amyloid formation by natively unfolded proteins and polypeptides. Protein Eng Des Sel 22:453–459

    Article  CAS  PubMed  Google Scholar 

  • Andreola A, Bellotti V, Giorgetti S, Mangione P, Obici L, Stoppini M, Torres J, Monzani E, Merlini G, Sunde M (2003) Conformational switching and fibrillogenesis in the amyloidogenic fragment of apolipoprotein A-I. J Biol Chem 278:2444–2451

    Article  CAS  PubMed  Google Scholar 

  • Baxa U, Speransky V, Steven AC, Wickner RB (2002) Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc Natl Acad Sci U S A 99:5253–5260

    Article  CAS  PubMed  Google Scholar 

  • Carrió MM, Villaverde A (2002) Construction and deconstruction of bacterial inclusion bodies. J Biotechnol 96:3–12

    Article  PubMed  Google Scholar 

  • Carrió M, González-Montalbán N, Vera A, Villaverde A, Ventura S (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347:1025–1037

    Article  PubMed  Google Scholar 

  • Di Gaetano S, Guglielmi F, Arciello A, Mangione P, Monti M, Pagnozzi D, Raimondi S, Giorgetti S, Orrù S, Canale C, Pucci P, Dobson CM, Bellotti V, Piccoli R (2006) Recombinant amyloidogenic domain of ApoA-I: analysis of its fibrillogenic potential. Biochem Biophys Res Commun 351:223–228

    Article  PubMed  Google Scholar 

  • Dobson CM (2004) Principles of protein folding, misfolding and aggregation. Sem Cell Dev Biol 15:3–16

    Article  CAS  Google Scholar 

  • Ferreira ST, De Felice FG, Chapeaurouge A (2006) Metastable, partially folded states in the productive folding and in the misfolding and amyloid aggregation of proteins. Cell Biochem Biophys 44:539–548

    Article  CAS  PubMed  Google Scholar 

  • Frank PG, Marcel YL (2000) Apolipoprotein A-I: structure-function, relationships. J Lipid Res 41:853–872

    CAS  PubMed  Google Scholar 

  • Ghosh S (2008) Interaction of trypsin with sodium dodecyl sulfate in aqueous medium: a conformational view. Colloids Surf B Biointerfaces 66:78–186

    Article  Google Scholar 

  • Goddard ED, Ananthapadmanabhan KP (1993) Interactions of surfactants with polymers and proteins. CRC, London

    Google Scholar 

  • Guglielmi F, Monti DM, Arciello A, Torrassa S, Cozzolino F, Pucci P, Relini A, Piccoli R (2009) Enzymatically active fibrils generated by self-assembly of the ApoA-I fibrillogenic domain functionalized with a catalytic moiety. Biomaterials 30:829–835

    Article  CAS  PubMed  Google Scholar 

  • Hagihara Y, Hong D, Hoshino M, Enjyoji K, Kato H, Goto Y (2002) Aggregation of b2-glycoprotein I induced by sodium lauryl sulfate and lysophospholipids. Biochemistry 41:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Ji S, Wu Y, Sui S (2002) Cholesterol is an important factor affecting the membrane insertion of a-amyloid peptide (Ab1–40), which may potentially inhibit the fibril formation. J Biol Chem 277:6273–6279

    Article  CAS  PubMed  Google Scholar 

  • Joya T, Wanga J, Hahn A, Hegele RA (2003) ApoAI related amyloidosis: a case report and literature review. Clin Biochem 36:641–645

    Article  Google Scholar 

  • Kunjithapatham R, Oliva FY, Doshi U, Perez M, Avila J, Munoz V (2005) Role for the α-helix in aberrant protein aggregation. Biochemistry 44:149–156

    Article  CAS  PubMed  Google Scholar 

  • le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111

    Article  CAS  PubMed  Google Scholar 

  • Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305:673–676

    Article  CAS  PubMed  Google Scholar 

  • Lopes DHJ, Colin C, Degaki TL, Sousa ACV, Nascimento MN, Sebollela AS, Bloch C Jr, Blanco-Martinez AM, Ferreira ST, Sogayar MC (2004) Amyloidogenicity and citotoxicity of recombinant mature human islet amyloid polypeptide. J Biol Chem 279:42803–42810

    Article  CAS  PubMed  Google Scholar 

  • Ma QL, Chan P, Yoshii M, Uéda K (2003) Alpha-synuclein aggregation and neurodegenerative diseases. J Alzheimers Dis 5:139–148

    CAS  PubMed  Google Scholar 

  • Masino L, Kelly G, Leonard K, Trottier Y, Pastore A (2002) Solution structure of polyglutamine tracts in GST-polyglutamine fusion proteins. FEBS Lett 513:267–272

    Article  CAS  PubMed  Google Scholar 

  • Masino L, Nicastro G, Menon RP, Dal Piaz F, Calder L, Pastore A (2004) Characterization of the structure and the amyloidogenic properties of the Josephin domain of the polyglutamine-containing protein ataxin-3. J Mol Biol 344:1021–1035

    Article  CAS  PubMed  Google Scholar 

  • McParland VJ, Kad NM, Kalverda AP, Brown A, Kirwin-Jones P, Hunter MG, Sunde M, Radford SE (2002) Partially unfolded states of beta(2)-microglobulin and amyloid formation in vitro. Biochemistry 39:8735–8746

    Article  Google Scholar 

  • Merlini G, Bellotti V (2003) Molecular mechanisms of amyloidosis. N Engl J Med 349:583–596

    Article  CAS  PubMed  Google Scholar 

  • Morillas M, Swietnicki W, Gambetti P, Surewicz WK (1999) Membrane environment alters the conformational structure of the recombinant human prion protein. J Biol Chem 274:36859–36865

    Article  CAS  PubMed  Google Scholar 

  • Muchowski PJ (2002) Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35:9–12

    Article  CAS  PubMed  Google Scholar 

  • Naeem A, Fatima S, Khan RH (2006) Characterization of partially folded intermediates of papain in presence of cationic, anionic, and nonionic detergents at low pH. Biopolymers 83:1–10

    Article  CAS  PubMed  Google Scholar 

  • Obici L, Bellotti V, Mangione P, Stoppini M, Arbustini E, Verga L, Zorzoli I, Anesi E, Zanotti G, Campana C, Vigano M, Merlini G (1999) The new Apolipoprotein A-I variant Leu174Ser causes hereditary cardiac amyloidosis, and the amyloid fibrils are constituted by the 93-residue N-terminal polypeptide. Am J Pathol 155:695–702

    CAS  PubMed  Google Scholar 

  • Obici L, Franceschini G, Calabresi L, Giorgetti S, Stoppini M, Merlini G, Bellotti V (2006) Structure, function and amyloidogenic propensity of apolipoprotein A-I. Amyloid 13:191–205

    Article  CAS  PubMed  Google Scholar 

  • Pagel K, Vagt T, Koksch B (2005) Directing the secondary structure of polypeptides at will: from helices to amyloids and back again? Org Biomol Chem 3:3843–3850

    Article  CAS  PubMed  Google Scholar 

  • Papp E, Csermely P (2006) Chemical chaperones: mechanisms of action and potential use. Handb Exp Pharmacol 172:405–416

    Article  CAS  PubMed  Google Scholar 

  • Pertinhez TA, Bouchard M, Smith RA, Dobson CM, Smith LJ (2002) Stimulation and inhibition of fibril formation by a peptide in the presence of different concentrations of SDS. FEBS Lett 529:193–197

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JA, Simon RH (1974) The interaction of polypeptide component of human high density lipoprotein with sodium dodecyl sulfate. J Biol Chem 249:3837–3840

    Google Scholar 

  • Schmittschmittand JP, Scholtz JM (2003) The role of protein stability, solubility and net charge in amyloid fibrils formation. Prot Sci 12:2374–2378

    Article  Google Scholar 

  • Serio TR, Cashikar AG, Moslehi JJ, Kowal AS, Lindquist SL (1999) Yeast prion [psi +] and its determinant, Sup35p. Methods Enzymol 309:649–673

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Kishore N (2006) Thermodynamic insights into the binding of Triton X-100 to globular proteins: a calorimetric and spectroscopic investigation. J Phys Chem B 110:9728–9737

    Article  CAS  PubMed  Google Scholar 

  • Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Winter S, Löberb G (1996) Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys Chem 60:79–88

    Article  CAS  PubMed  Google Scholar 

  • Wahlström A, Hugonin L, Perálvarez-Marín A, Jarvet J, Gräslund A (2008) Secondary structure conversions of Alzheimer’s Abeta(1–40) peptide induced by membrane-mimicking detergents. FEBS J 275:5117–5128

    Article  PubMed  Google Scholar 

  • Yamamoto S, Hasegawa K, Yamaguchi I, Tsutsumi S, Kardos J, Goto Y, Gejyo F, Naiki H (2004) Low concentrations of sodium dodecyl sulfate induce the extension of β2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 43:11075–11082

    Article  CAS  PubMed  Google Scholar 

  • Zhu HL, Atkinson D (2004) Conformation and lipid binding of the N-terminal (1–44) domain of human Apolipoprotein A-I. Biochemistry 43:13156–13164

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Fink AL (2003) Lipid binding inhibits α-synuclein fibril formation. J Biol Chem 278:16873–16877

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. A. Gliozzi for helpful discussions. This work was supported by MIUR, Ministero dell’Università e della Ricerca Scientifica, Italy (PRIN 2005, Project N. 2005053998_004 and PRIN 2006, Project N. 2006058958_002) and by the University of Genoa (Fondi di Ateneo).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angela Arciello or Renata Piccoli.

Additional information

D. M. Monti and F. Guglielmi contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monti, D.M., Guglielmi, F., Monti, M. et al. Effects of a lipid environment on the fibrillogenic pathway of the N-terminal polypeptide of human apolipoprotein A-I, responsible for in vivo amyloid fibril formation. Eur Biophys J 39, 1289–1299 (2010). https://doi.org/10.1007/s00249-010-0582-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0582-2

Keywords

Navigation