Skip to main content

Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM

Abstract

Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 μm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds ≥100 μm/s with minimal viscous drag effects. We have used FLUENT®, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates ≥106 pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Basak S, Raman A, Garimella SV (2006) Hydrodynamic loading of microcantilevers vibrating in viscous fluids. J Appl Phys 99: 114906 (1–10). doi: 10.1063/1.2202232

    Google Scholar 

  • Basak S, Beyder A, Spagnoli C, Raman A, Sachs F (2007) Hydrodynamics of torsional probes for atomic microscopy in liquids. J Appl Phys 102:024914 (1–7). doi: 10.1063/1.2759197

    Google Scholar 

  • Chen W, Evans E, McEver RP, Zhu C (2008) Monitoring receptor-ligand interactions between surfaces by thermal fluctuations. Biophys J 94:694–701. doi:10.1529/biophysj.107.117895

    Article  CAS  PubMed  Google Scholar 

  • Dammer U, Hegner M, Anselmetti D, Wagner P, Dreier M, Huber W, Güntherodt HJ (1996) Specific antigen/antibody interactions measured by force microscopy. Biophys J 70:2437–2441. doi:10.1016/S0006-3495(96)79814-4

    Article  CAS  PubMed  Google Scholar 

  • Dougan L, Feng G, Hui Lu, Fernandez JM (2008) Solvent molecules bridge the mechanical unfolding transition state of a protein. Proc Natl Acad Sci USA 105:3185–3190. doi:10.1073/pnas.0706075105

    Article  CAS  PubMed  Google Scholar 

  • Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555. doi:10.1016/S0006-3495(97)78802-7

    Article  CAS  PubMed  Google Scholar 

  • Evans E, Leung A, Hammer D, Simon S (2001) Chemically distinct transition states govern rapid dissociation of single l-selectin bonds under force. Proc Natl Acad Sci USA 98:3784–3789. doi:10.1073/pnas.061324998

    Article  CAS  PubMed  Google Scholar 

  • Evans E, Leung A, Heinrich V, Zhu C (2004) Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc Natl Acad Sci USA 101:11281–11286. doi:10.1073/pnas.0401870101

    Article  CAS  PubMed  Google Scholar 

  • Franz CM, Taubenberger A, Puech PH, Müller DJ (2007) Studying integrin-mediated cell adhesion at the single-molecule level using AFM force spectroscopy. Sci STKE 406:p15. doi:10.1126/stke.4062007pl5

    Google Scholar 

  • Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873. doi:10.1063/1.1144449

    Article  CAS  Google Scholar 

  • Idiris A, Kidoaki S, Usui K, Maki T, Suzuki H, Ito M, Aoki M, Hayashizaki Y, Matsuda T (2005) Force measurement for antigen-antibody interaction by atomic force microscopy using a photograft-polymer spacer. Biomacromolecules 6:2776–2784. doi:10.1021/bm0502617

    Article  CAS  PubMed  Google Scholar 

  • Janovjak H, Struckmeier J, Müller DJ (2005) Hydrodynamic effects in fast AFM single-molecule force measurements. Eur Biophys J 34:91–96. doi:10.1007/s00249-004-0430-3

    Article  CAS  PubMed  Google Scholar 

  • Katan AJ, Oosterkamp TH (2008) Measuring hydrophobic interactions with three-dimensional nanometer resolution. J Phys Chem C 112:9769–9776. doi:10.1021/jp711017n

    Article  CAS  Google Scholar 

  • Leissa AW (1993) Vibration of plates (NASA SP-160). Government printing office, Washington, US. Reprinted by The Acoustical Society of America

  • Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193. doi:10.1038/nature01605

    Article  CAS  PubMed  Google Scholar 

  • Marshall BT, Sarangapani KK, Lou J, McEver RP, Zhu C (2005) Force history dependence of receptor-ligand dissociation. Biophys J 88:1458–1466. doi:10.1529/biophysj.104.050567

    Article  CAS  PubMed  Google Scholar 

  • McEver RP (1991) Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Thromb Haemost 65:223–228

    CAS  PubMed  Google Scholar 

  • McEver RP (2002) Selectins: Lectins that initiate cell adhesion under flow. Curr Opin Cell Biol 14:581–586

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K, Hashiguchi G, Kawakatsu H (2009) Small single-crystal silicon cantilevers formed by crystal facets for atomic force microscopy. Rev Sci Instrum 80:095104–095105. doi:10.1063/1.3202322

    Article  PubMed  Google Scholar 

  • Sarangapani KK, Yago T, Klopocki AG, Lawrence MB, Fieger CB, Rosen SD, McEver RP, Zhu C (2004) Low force decelerates l-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan. J Biol Chem 279:2291–2298. doi:10.1074/jbc.M310396200

    Article  CAS  PubMed  Google Scholar 

  • Torun H, Sutanto J, Sarangapani KK, Joseph P, Degertekin FL, Zhu C (2007) Micromachined membrane-based active probe for biomolecular mechanics measurement. Nanotechnology 18:165303 (1–8). doi: 10.1088/0957-4484/18/16/165303

    Google Scholar 

  • Torun H, Sarangapani KK, Degertekin FL (2007) Spring constant tuning of active atomic force microscope probes using electrostatic spring softening effect. Appl Phys Lett 91:253113 (1–3). doi: 10.1063/1.2827190

    Google Scholar 

  • Viani MB, Schäffer TE, Paloczi GT, Pietrasanta LI, Smith BL, Thompson JB, Richter M, Rief M, Gaub HE, Plaxco KW, Cleland AN, Hansma HG, Hansma PK (1999a) Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev Sci Instrum 70:4300–4303. doi:10.1063/1.1150069

    Article  CAS  Google Scholar 

  • Viani MB, Schäffer TE, Chand A, Rief M, Gaub HE, Hansma PK (1999b) Small cantilevers for force spectroscopy of single molecules. J Appl Phys 86:2258–2262. doi:10.1063/1.371039

    Article  CAS  Google Scholar 

  • Walters DA, Cleveland JP, Thomson NH, Hansma PK, Wendman MA, Gurley G, Elings V (1996) Short cantilevers for atomic force microscopy. Rev Sci Instrum 67:3583–3590. doi:10.1063/1.1147177

    Article  CAS  Google Scholar 

  • Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282:902–907. doi:10.1126/science.282.5390.902

    Article  CAS  PubMed  Google Scholar 

  • Wojcikiewicz EP, Abdulreda MH, Zhang X, Moy VT (2006) Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2. Biomacromolecules 7:3188–3195. doi:10.1021/bm060559c

    Article  CAS  PubMed  Google Scholar 

  • Yamashita H, Kodera N, Miyagi A, Uchihashi T, Yamamoto D, Ando T (2007) Tip-sample distance control using photothermal actuation of a small cantilever for high-speed atomic force microscopy. Rev Sci Instrum 78:083702–083705. doi:10.1063/1.2766825

    Article  PubMed  Google Scholar 

  • Yang JL, Despont M, Drechsler U, Hoogenboom BW, Frederix PLTM, Martin S, Engel A, Vettiger P, Hug HJ (2005) Miniaturized single-crystal silicon cantilevers for scanning force microscopy. Appl Phys Lett 86:134101–134103. doi:10.1063/1.1895482

    Article  Google Scholar 

  • Zhang W, Turner K (2007) Frequency dependent fluid damping of micro/nano flexural resonators: Experiment, model and analysis. Sens Actuators A: Phys 134:594–599. doi:10.1016/j.sna.2006.06.010

    Article  Google Scholar 

  • Zhang X, Craig SE, Kirby H, Humphries MJ, Moy VT (2004) Molecular basis for the dynamic strength of the integrin α4β1/VCAM-1 interaction. Biophys J 87:3470–3478. doi:10.1529/biophysj.104.045690

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Long M, Chesla SE, Bongrand P (2002) Measuring receptor/ligand interaction at the single-bond level: Experimental and interpretative issues. Ann Biomed Eng 30:305–314. doi:10.1114/1.1467923

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Fang Kong and Jiangguo Lin for help with data collection. We also thank Dr. Peter Kottke for helpful discussions involving FLUENT®. This work was supported by the National Institutes of Health (AI060799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent Degertekin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 267 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sarangapani, K., Torun, H., Finkler, O. et al. Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM. Eur Biophys J 39, 1219–1227 (2010). https://doi.org/10.1007/s00249-009-0575-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0575-1

Keywords

  • Hydrodynamic drag
  • Membrane actuation
  • Parylene
  • Cantilever
  • Unbinding force
  • Loading rate