Skip to main content
Log in

Acceptor-photobleaching FRET analysis of core kinetochore and NAC proteins in living human cells

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Faithful chromatin segregation is mediated and controlled by the kinetochore protein network which assembles at centromeres. In this study, the neighbourhood relations of inner kinetochore and nucleosome-associated complex (NAC) proteins were analysed in living human interphase cells by acceptor photobleaching FRET. The data indicate that CENP-U is in close vicinity to CENP-I as well as to CENP-B and that CENP-M is close to CENP-T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3a–c
Fig. 4
Fig. 5a, b

Similar content being viewed by others

References

  • Allshire RC, Karpen GH (2008) Epigentic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Gen 9:923–937

    Google Scholar 

  • Ando S, Yang H, Nozaki N, Okazaki T, Yoda K (2002) Cenp-A, Cenp-B and Cenp-C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol Cell Biol 22:2229–2241. doi:10.1128/MCB.22.7.2229-2241.2002

    Article  PubMed  CAS  Google Scholar 

  • Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010. doi:10.1016/S0006-3495(03)75126-1

    Article  PubMed  CAS  Google Scholar 

  • Black BE, Bassett EA (2008) The histone variant CENP-A and centromere specification. Cur Op Cell Biol 20:91–100

    Google Scholar 

  • Black BE, Brock MA, Bedard S, Woods VL, Cleveland DW (2007a) An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc Natl Acad Sci USA 104:5008–5013

    Google Scholar 

  • Black BE, Jansen LET, Maddox PS, Foltz DR, Desai AB, Shah JV, Cleveland DW (2007b) Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell 25:309–322

    Google Scholar 

  • Carroll CW, Silva MCC, Godek KM, Jansen LET, Straight AF (2009) Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol (in press)

  • Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46. doi:10.1038/nrm2310

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Mills JD, Periasamy A (2003) Protein localisation in living cells and tissues using FRET and FLIM. Differentiation 71:528–541. doi:10.1111/j.1432-0436.2003.07109007.x

    Article  PubMed  CAS  Google Scholar 

  • Cooke CA, Bernat RL, Earnshaw WC (1990) CENP-B: a major centromere protein located beneath the kinetochore. J Cell Biol 110:1475–1488. doi:10.1083/jcb.110.5.1475

    Article  PubMed  CAS  Google Scholar 

  • Creemers TM, Lock AJ, Subramaniam V, Jovin TM, Völker S (1999) Three photoconvertible forms of green fluorescent protein identified by spectral hole-burning. Nat Struct Biol 6:557–560. doi:10.1038/10763

    Article  PubMed  CAS  Google Scholar 

  • Elder AD, Domin A, Kaminski Schierle GS, Lindon C, Pines J, Esposito A, Kaminsiki CF (2009) A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission. J R Soc Interface 6:S59–S81. doi:10.1098/rsif.2008.0381.focus

    Article  CAS  Google Scholar 

  • Foltz DR, Jansen ET, Black BE, Bailey AO, Yates III JR, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8:458–469. doi:10.1038/ncb1397

    Article  PubMed  CAS  Google Scholar 

  • Hellwig D, Münch S, Orthaus S, Hoischen C, Hemmerich P, Diekmann S (2008) Live-cell imaging reveals sustained centromere binding of CENP-T via Cenp-A and Cenp-B. J Biophoton 1:245–254

    Article  CAS  Google Scholar 

  • Hemmerich P, Weidtkamp-Peters S, Hoischen C, Schmiedeberg L, Erliandri I, Diekmann S (2008) Dynamics of inner kinetochore assembly and maintenance in living cells. J Cell Biol 180:1101–1114. doi:10.1083/jcb.200710052

    Article  PubMed  CAS  Google Scholar 

  • Hori T, Amano M, Suzuki A, Backer CB, Welburn JP, Dong Y, McEwan BF, Shang W-H, Suzuki E, Okawa K, Cheeseman IM, Fukagawa T (2008a) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135:1039–1052. doi:10.1016/j.cell.2008.10.019

    Article  PubMed  CAS  Google Scholar 

  • Hori T, Okada M, Maenaka K, Fukagawa T (2008b) CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol Biol Cell 19:843–854. doi:10.1091/mbc.E07-06-0556

    Article  PubMed  CAS  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395. doi:10.1038/nbt896

    Article  PubMed  CAS  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2006) Imaging molecular interactions in living cells by FRET microscopy. Curr Opin Chem Biol 10:409–416. doi:10.1016/j.cbpa.2006.08.021

    Article  PubMed  CAS  Google Scholar 

  • Kenworthy AK (2001) Imaging protein–protein interactions using fluorescence resonance energy transfer microscopy. Methods 24:289–296. doi:10.1006/meth.2001.1189

    Article  PubMed  CAS  Google Scholar 

  • Kenworthy AK, Edidin M (1998) Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J Cell Biol 142:69–84. doi:10.1083/jcb.142.1.69

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa K, Masumoto H, Ikeda M, Okazaki T (1995) Analysis of protein-DNA and protein-protein interactions of centromere protein B (CENP-B) and properties of the DNA-CENP-B complex in the cell cycle. Mol Cell Biol 15:1602–1612

    PubMed  CAS  Google Scholar 

  • Liu ST, Hittle JC, Jablonski SA, Campbell MS, Yoda K, Yen TJ (2003) Human CENP-I specifies localisation of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nat Cell Biol 5:341–345. doi:10.1038/ncb953

    Article  PubMed  CAS  Google Scholar 

  • Malvezzi-Campeggi F, Jahnz M, Heinze KG, Dittrich P, Schwille P (2001) Light-induced flickering of DsRed provides evidence for distinct and interconvertible fluorescent states. Biophys J 81:882–887

    Google Scholar 

  • Marshall OW, Marshall AT, Choo KHA (2008) Three-dimensional localisation of CENP-A suggests a complex higher order structure of centromeric chromatin. J Cell Biol 183:1193–1202. doi:10.1083/jcb.200804078

    Article  Google Scholar 

  • McClelland SE, Borusu S, Amaro AC, Winter JR, Belwal M, McAinsh AD, Meraldi P (2007) The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity. EMBO J 26:5033–5047. doi:10.1038/sj.emboj.7601927

    Article  PubMed  CAS  Google Scholar 

  • Minoshima Y, Hori T, Okada M, Kimura H, Haraguchi T, Hiraoka Y, Bao Y-C, Kawashima T, Kitamura T, Fukagawa T (2005) The constitutive centromere component CENP-50 is required for recovery from spindle damage. Mol Cell Biol 25:10315–10328. doi:10.1128/MCB.25.23.10315-10328.2005

    Article  PubMed  CAS  Google Scholar 

  • Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393. doi:10.1038/nrm2163

    Article  PubMed  CAS  Google Scholar 

  • Nagy P, Vamosi G, Bodnar A, Lockett SJ, Szöllösi J (1998) Intensity-based energy transfer measurements in digital imaging microscopy. Eur Biophys J 27:377–389. doi:10.1007/s002490050145

    Article  PubMed  CAS  Google Scholar 

  • Nishihashi A, Haraguchi T, Hiraoka Y, Ikemura T, Regnier V, Dodson H, Earnshaw WC, Fukagawa T (2002) CENP-I is essential for centromere function in vertebrate cells. Dev Cell 2:463–476

    Google Scholar 

  • Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates III JR, Desai A, Fukagawa T (2006) The CENP-H–I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8:446–457. doi:10.1038/ncb1396

    Article  PubMed  CAS  Google Scholar 

  • Orthaus S, Biskup C, Hoffmann B, Hoischen C, Ohndorf S, Benndorf K, Diekmann S (2008) Assembly of the inner kinetochore proteins CENP-A and CENP-B in living human cells. ChemBioChem 9:77–92. doi:10.1002/cbic.200700358

    Article  PubMed  CAS  Google Scholar 

  • Orthaus S, Klement K, Happel N, Hoischen C, Diekmann S (2009) Linker histone H1 is present in centromeric chromatin of living human cells next to inner kinetochore proteins. Nucl Acids Res. (Epub March 31) doi:10.1093/nar/gkp199

  • Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790. doi:10.1016/S0006-3495(97)78307-3

    Article  PubMed  CAS  Google Scholar 

  • Perpelescu M, Nozaki N, Obuse C, Yang H, Yoda K (2009) Active establishment of centromeric CENP-A chromatin by RSF complex. J Cell Biol 185:397–407. doi:10.1083/jcb.200903088

    Article  PubMed  CAS  Google Scholar 

  • Pluta AF, Saitoh N, Goldberg I, Earnshaw WC (1992) Identification of a subdomain of CENP-B that is necessary and sufficient for localisation to the human centromere. J Cell Biol 116:1081–1093. doi:10.1083/jcb.116.5.1081

    Article  PubMed  CAS  Google Scholar 

  • Roos UP (1973) Light and electron microscopy of rat kangaroo cells in mitosis. II. Kinetochore structure and function. Chromosoma 41:195–220. doi:10.1007/BF00319696

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Kuriyama K, Shibata A, Himeno M (1997) Characterization of internal DNA-binding and C-terminal dimerization domains of human centromere/kinetochore autoantigen CENP-C in vitro: role of DNA-binding and self-associating activities in kinetochore organization. Chrom Res 5:132–141

    Google Scholar 

  • Suzuki N, Nagano M, Nozaki N, Egashira S, Okazaki T, Masumoto H (2004) CENP-B interacts with CENP-C domains containing Mif2 regions responsible for centromere localization. J Biol Chem 279:5934–5946. doi:10.1074/jbc.M306477200

    Article  PubMed  CAS  Google Scholar 

  • Tramier M, Zahid M, Mevel JC, Masse MJ, Coppey-Moisan M (2006) Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res Tech 69:933–939. doi:10.1002/jemt.20370

    Article  PubMed  CAS  Google Scholar 

  • Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P (2004) Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol Cell Biol 24:6620–6630. doi:10.1128/MCB.24.15.6620-6630.2004

    Article  PubMed  CAS  Google Scholar 

  • Wouters FS, Bastiaens PIH, Wirtz KWA, Jovin TM (1998) FRET microscopy demonstrates molecular association of non-specific lipid transfer protein (nsL-TP) with fatty acid oxidation enzymes in peroxisomes. EMBO J 17:7179–7189. doi:10.1093/emboj/17.24.7179

    Article  PubMed  CAS  Google Scholar 

  • Yoda K, Kitagawa K, Masumoto H, Muro Y, Okazaki T (1992) A human centromere protein, CENP-B, has a DNA binding domain containing four potential alpha helices at the NH2 terminus, which is separable from dimerising activity. J Cell Biol 119:1413–1427. doi:10.1083/jcb.119.6.1413

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank N. Klöcker, D. Foltz, I. Cheeseman, M. Coppey-Moisan and N. Audugé for the kind gift of plasmids and the Deutsche Forschungs-Gemeinschaft (DFG) for support (SPP 1128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Diekmann.

Additional information

This article has been submitted as a contribution to the Festschrift entitled “Uncovering cellular sub-structures by light microscopy” in honour of Professor Cremer’s 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellwig, D., Hoischen, C., Ulbricht, T. et al. Acceptor-photobleaching FRET analysis of core kinetochore and NAC proteins in living human cells. Eur Biophys J 38, 781–791 (2009). https://doi.org/10.1007/s00249-009-0498-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0498-x

Keywords

Navigation