Skip to main content

Advertisement

Log in

Beta amyloid peptide: from different aggregation forms to the activation of different biochemical pathways

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Amyloid beta peptide (Aβ) is the major component of amyloid plaques in the brain of individuals affected by Alzheimer’s disease (AD). The formation of the plaques is due to an overproduction of Aβ by APP processing, its precursor, and to its ability to convert under specific conditions from its soluble form into highly ordered fibrillar aggregates. Although neuronal degeneration occurs near the amyloid plaques, some studies have suggested that intermediates such as protofibrils or simple oligomers are also involved in AD pathogenesis and even appear to be the more dangerous species in the onset of the pathology. Further, toxic properties of aggregates of different size have been investigated and the obtained results support the hypothesis that different aggregate sizes can induce different degeneration pathways. In the present review some of the knowledge about the biochemical routes of Aβ processing and production and the relationship among Aβ and oxidative stress, metal homeostasis, inflammatory process, and cell death are summarized. Moreover, current strategies addressing both fibrillogenesis process and different Aβ altered biochemical pathways utilized for therapies are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akiyama H, Barger S, Barnum S, Bradt C et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421. doi:10.1016/S0197-4580(00)00124-X

    Article  PubMed  CAS  Google Scholar 

  • Atwood CS, Obrenovich ME, Liu T et al (2003) Amyloid beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain Res 43:1–46. doi:10.1016/S0165-0173(03)00174-7

    Article  CAS  Google Scholar 

  • Ayasolla K, Khan M, Singh AK, Singh I (2004) Inflammatory mediator and beta-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited by Vitamin E. Free Radic Biol Med 37:325–338. doi:10.1016/j.freeradbiomed.2004.04.007

    Article  PubMed  CAS  Google Scholar 

  • Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6:443–449

    Google Scholar 

  • Behl C (2005) Oxidative stress in Alzheimer’s disease: implications for prevention and therapy. Subcell Biochem 38:65–78. doi:10.1007/0-387-23226-5_3

    Article  PubMed  CAS  Google Scholar 

  • Bentahir M, Nyabi O, Verhamme J, Tolia A, Horre K, Wiltfang J, Esselmann H, De Strooper B (2006) Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem 96:732–742. doi:10.1111/j.1471-4159.2005.03578.x

    Article  PubMed  CAS  Google Scholar 

  • Bitan G, Lomakin A, Teplow DB (2001) Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem 276:35176–35184. doi:10.1074/jbc.M102223200

    Article  PubMed  CAS  Google Scholar 

  • Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003) Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 100:330–335. doi:10.1073/pnas.222681699

    Article  PubMed  CAS  Google Scholar 

  • Bondì ML, Montana G, Craparo EF, Picone P, Capuano G, Di Carlo M, Giammona G (2009) Ferulic Acid-Loaded Lipid Nanostructures as Drug Delivery Systems for Alzheimer’s Disease: Preparation, Characterization and Cytotoxicity Studies. Curr Nanosci 5:26–32

    Article  Google Scholar 

  • Bucciantini M, Calloni G, Chiti F, Formigli L, Nosi D, Dobson CM, Stefani M (2004) Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279:31374–31382. doi:10.1074/jbc.M400348200

    Article  PubMed  CAS  Google Scholar 

  • Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267:546–554

    PubMed  CAS  Google Scholar 

  • Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214. doi:10.1016/S0166-2236(03)00067-5

    Article  PubMed  CAS  Google Scholar 

  • Cai XD, Golde TE, Younkin SG (1993) Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science 259:514–516. doi:10.1126/science.8424174

    Article  PubMed  CAS  Google Scholar 

  • Carrotta R, Manno M, Bulone D, Martorana V, San Biagio PL (2005) Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. J Biol Chem 280:30001–30008. doi:10.1074/jbc.M500052200

    Article  PubMed  CAS  Google Scholar 

  • Carrotta R, Di Carlo M, Manno M, Montana G, Picone P, Romancino D, San Biagio PL (2006) Toxicity of recombinant beta-amyloid prefibrillar oligomers on the morphogenesis of the sea urchin Paracentrotus lividus. FASEB J 20:1916–1924. doi:10.1096/fj.06-5716fje

    Article  PubMed  CAS  Google Scholar 

  • Chan MM, Huang HI, Fenton MR, Fong D (1998) In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55:1955–1962. doi:10.1016/S0006-2952(98)00114-2

    Article  PubMed  CAS  Google Scholar 

  • Chauhan V, Chauhan A (2006) Oxidative stress in Alzheimer’s disease. Pathophysiology 13:195–208. doi:10.1016/j.pathophys.2006.05.004

    Article  PubMed  CAS  Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME et al (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676. doi:10.1016/S0896-6273(01)00317-8

    Article  PubMed  CAS  Google Scholar 

  • Chini MG, Scrima M, D’Ursi AM, Bifulco G (2008) Fibril aggregation inhibitory activity of the beta-sheet breaker peptides: a molecular docking approach. J Pept Sci Dec:16

  • Chiti F, Dobson C (2006) Protein misfolding, functional amyloid and human disease. Annu Rev Biochem 75:333–366. doi:10.1146/annurev.biochem.75.101304.123901

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360:672–674. doi:10.1038/360672a0

    Article  PubMed  CAS  Google Scholar 

  • Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41

    PubMed  CAS  Google Scholar 

  • Comai M, Dalla Serra M, Potrich C, Menestrina G (2003) Cu2+ and Zn2+ effects on beta-amyloid aggregation and structural conformation. Biophys J 84:337a

    Google Scholar 

  • Cummings BJ, Pike CJ, Shankle R, Cotman CW (1996) Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol Aging 17:921–933. doi:10.1016/S0197-4580(96)00170-4

    Article  PubMed  CAS  Google Scholar 

  • Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ (2001) Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem 276:20466–20473. doi:10.1074/jbc.M100175200

    Article  PubMed  CAS  Google Scholar 

  • D’Andrea MR, Nagele RG, Wang HY, Lee DH (2002) Consistent immunohistochemical detection of intracellular beta-amyloid42 in pyramidal neurons of Alzheimer’s disease entorhinal cortex. Neurosci Lett 333:163–166. doi:10.1016/S0304-3940(02)00875-3

    Article  PubMed  Google Scholar 

  • Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300. doi:10.1074/jbc.M500997200

    Article  PubMed  CAS  Google Scholar 

  • Deshpande A, Mina E, Glabe C, Busciglio J (2006) Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci 26:6011–6018. doi:10.1523/JNEUROSCI.1189-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Dickson DW (2004) Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect? J Clin Invest 114:23–27

    PubMed  CAS  Google Scholar 

  • Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 5:452–457

    PubMed  CAS  Google Scholar 

  • Dovey HF, John V, Anderson JP et al (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76:173–181. doi:10.1046/j.1471-4159.2001.00012.x

    Article  PubMed  CAS  Google Scholar 

  • Fezoui Y, Hartley DM, Harper JD, Khurana R, Walsh DM, Condron MM, Selkoe DJ, Lansbury PT Jr, Fink AL, Teplow DB (2000) An improved method of preparing the amyloid beta-protein for fibrillogenesis and neurotoxicity experiments. Amyloid 7:166–178. doi:10.3109/13506120009146831

    Article  PubMed  CAS  Google Scholar 

  • Findeis MA (2007) The role of amyloid beta peptide 42 in Alzhiemer’s disease. Pharmacol Ther 116:266–286. doi:10.1016/j.pharmthera.2007.06.006

    Article  PubMed  CAS  Google Scholar 

  • Garzon-Rodigrez W, Sepulveda-Becerra M, Milton S, Glabe CG (1997) Soluble amyloid Abeta-(1-40) exists as a stable dimer at low concentrations. J Biol Chem 272:21037–21044

    Article  Google Scholar 

  • Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat Med 4:827–831. doi:10.1038/nm0798-827

    Article  PubMed  CAS  Google Scholar 

  • Glabe C (2001) Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J Mol Neurosci 17:137–145. doi:10.1385/JMN:17:2:137

    Article  PubMed  CAS  Google Scholar 

  • Glenner G, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890. doi:10.1016/S0006-291X(84)80190-4

    Article  PubMed  CAS  Google Scholar 

  • Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100(18):10417–10422. doi:10.1073/pnas.1834302100

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Steiner H (2002) Alzheimer disease gamma-secretase: a complex story of GxGD-type presenilin proteases. Trends Cell Biol 12:556–562. doi:10.1016/S0962-8924(02)02394-2

    Article  PubMed  CAS  Google Scholar 

  • Harper JD, Wong SS, Lieber CM, Lansbury PT (1997) Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-beta protein. Chem Biol 4:951–959. doi:10.1016/S1074-5521(97)90303-3

    Article  PubMed  CAS  Google Scholar 

  • Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B (2008) MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis Dec:9

  • Hetényi C, Körtvélyesi T, Penke B (2002) Mapping of possible binding sequences of two beta-sheet breaker peptides on beta amyloid peptide of Alzheimer’s disease. Bioorg Med Chem 10:1587–1593. doi:10.1016/S0968-0896(01)00424-2

    Article  PubMed  Google Scholar 

  • Hock C, Konietzko U, Streffer JR et al (2003) Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38:547–554. doi:10.1016/S0896-6273(03)00294-0

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251. doi:10.1016/0092-8674(93)80066-N

    Article  PubMed  CAS  Google Scholar 

  • Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K (2003) Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta. Proc Natl Acad Sci USA 100:6370–6375. doi:10.1073/pnas.1237107100

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Atwood CS, Moir RD, Hartshorn MA, Vonsattel JP, Tanzi RE, Bush AI (1977) Zinc-induced Alzheimer’s Ab1-40 aggregation is mediated by conformational factors. J Biol Chem 272:26464–26470. doi:10.1074/jbc.272.42.26464

    Article  Google Scholar 

  • Huang TH, Yang DS, Plaskos NP, Go S, Yip CM, Fraser PE, Chakrabartty A (2000) Structural studies of soluble oligomers of the Alzheimer beta-amyloid peptide. Biol Chem 297:73–87

    CAS  Google Scholar 

  • Ishige K, Takagi N, Imai T, Rausch WD, Kosuge Y, Kihara T, Kusama-Eguchi K, Ikeda H, Cools AR, Waddington JL, Koshikawa N, Ito Y (2007) Role of caspase-12 in amyloid beta-peptide-induced toxicity in organotypic hippocampal slices cultured for long periods. J Pharmacol Sci 104:46–55. doi:10.1254/jphs.FP0061533

    Article  PubMed  CAS  Google Scholar 

  • Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32:4693–7469. doi:10.1021/bi00069a001

    Article  PubMed  CAS  Google Scholar 

  • Juszczyk P, Kołodziejczyk AS, Grzonka Z (2009) FTIR spectroscopic studies on aggregation process of the beta-amyloid 11-28 fragment and its variants. J Pept Sci 15:23–29. doi:10.1002/psc.1085

    Article  PubMed  CAS  Google Scholar 

  • Kerr JF (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology 182:471–474. doi:10.1016/S0300-483X(02)00457-2

    Article  Google Scholar 

  • Kienlen-Campard P, Miolet S, Tasiaux B, Octave JN (2002) Intracellular amyloid-beta 1-42, but not extracellular soluble amyloid-beta peptides, induces neuronal apoptosis. Biol Chem 277:15666–15670. doi:10.1074/jbc.M200887200

    Article  CAS  Google Scholar 

  • Kim HC, Yamada K, Nitta A (2003) Immunocytochemical evidence that amyloid beta (1-42) impairs endogenous antioxidant systems in vivo. Neuroscience 119:399–419. doi:10.1016/S0306-4522(02)00993-4

    Article  PubMed  CAS  Google Scholar 

  • Kirkitadze MD, Kowalska A (2005) Molecular mechanisms initiating amyloid beta-fibril formation in Alzheimer’s disease. Acta Biochim Pol 52:417–423

    PubMed  CAS  Google Scholar 

  • Kirschner DA, Abraham C, Selkoe DJ (1986) X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc Natl Acad Sci USA 83:503–507. doi:10.1073/pnas.83.2.503

    Article  PubMed  CAS  Google Scholar 

  • Klyubin I, Walsh DM, Lemere CA, Cullen WK, Shankar GM, Betts V, Spooner ET, Jiang L, Anwyl R, Selkoe DJ, Rowan MJ (2005) Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med 11:556–561. doi:10.1038/nm1234

    Article  PubMed  CAS  Google Scholar 

  • Kumar-Singh S, Theuns J, Van Broeck B, Pirici D, Vennekens K, Corsmit E, Cruts M, Dermaut B, Wang R, Van Broeckhoven C (2006) Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Hum Mutat 27:686–695. doi:10.1002/humu.20336

    Article  PubMed  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453. doi:10.1073/pnas.95.11.6448

    Article  PubMed  CAS  Google Scholar 

  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    PubMed  CAS  Google Scholar 

  • Lindberg C, Hjorth E, Post C, Winblad B, Schultzberg M (2005) Cytokine production by a human microglial cell line: effects of beta-amyloid and alpha-melanocyte-stimulating hormone. Neurotox Res 8:267–276

    Article  PubMed  CAS  Google Scholar 

  • Liu ST, Howlett G, Barrow CJ (1999) Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the A beta peptide of Alzheimer’s disease. Biochemistry 38:9373–9378. doi:10.1021/bi990205o

    Article  PubMed  CAS  Google Scholar 

  • Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129. doi:10.1073/pnas.93.3.1125

    Article  PubMed  CAS  Google Scholar 

  • Lomakin A, Teplow D, Kirschner DA, Benedek GB (1997) Kinetic theory of fibrillogenesis of amyloid beta-protein. Proc Natl Acad Sci USA 94:7942–7947. doi:10.1073/pnas.94.15.7942

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Hattori A, Munoz J, Qin Z, Roth G (1999) Intrastriatal dopamine injection induces apoptosis through oxidation-involved activation of transcription factors AP-1 and NF-kappaB in rats. Mol Pharmacol 56:254–264

    PubMed  CAS  Google Scholar 

  • Marchesi VT (2005) An alternative interpretation of the amyloid Abeta hypothesis with regard to the pathogenesis of Alzheimer’s disease. Proc Natl Acad Sci USA 102:9093–9098. doi:10.1073/pnas.0503181102

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:885–890. doi:10.1073/pnas.82.12.4245

    Article  Google Scholar 

  • Maynard CJ, Bush AI, Masters CL, Cappai R, Li QX (2005) Metals and amyloid-beta in Alzheimer’s disease. Int J Exp Pathol 86:147–159. doi:10.1111/j.0959-9673.2005.00434.x

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGerr EG (2001) Inflammation autotoxicity and Alzheimer’s disease. Neurobiol Aging 22:799–809. doi:10.1016/S0197-4580(01)00289-5

    Article  PubMed  CAS  Google Scholar 

  • McLaurin J, Cecal R, Kierstead ME, Tian X, Phinney AL, Manea M et al (2002) Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4-10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 8:1263–1269. doi:10.1038/nm790

    Article  PubMed  CAS  Google Scholar 

  • Minicozzi V, Stellato F, Comai M, Dalla Serra M, Potrich C, Meyer-Klaucke W, Morante S (2008) Identifying the minimal Cu and Zn binding site sequence in amyloid beta peptides. J Biol Chem 283:10784–10792. doi:10.1074/jbc.M707109200

    Article  PubMed  CAS  Google Scholar 

  • Mohmmad AH, Wenk GL, Gramling M, Hauss-Wegrzyniak B, Butterfield DA (2004) APP and PS-1 mutations induce brain oxidative stress independent of dietary cholesterol: implications for Alzheimer’s disease. Neurosci Lett 368:148–150. doi:10.1016/j.neulet.2004.06.077

    Article  CAS  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103. doi:10.1038/47513

    Article  PubMed  CAS  Google Scholar 

  • Nunam J, Small DH (2000) Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett 483:6–10. doi:10.1016/S0014-5793(00)02076-7

    Article  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070. doi:10.1016/j.neurobiolaging.2003.08.012

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Hirohata M, Yamada M (2005) Ferulic acid destabilizes preformed beta-amyloid fibrils in vitro. Biochem Biophys Res Commun 21:336, 444

    Google Scholar 

  • Opazo C, Barria MI, Ruiz FH, Inestrosa NC (2003) Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. Biometals 16:91–98. doi:10.1023/A:1020795422185

    Article  PubMed  CAS  Google Scholar 

  • Picone P, Carrotta R, Montana G, Nobile MR, San Biagio PL, Di Carlo M (2009) Aβ oligomers and fibrillar aggregates induce different apoptotic pathways in LAN5 neuroblastoma cell cultures. Biophys J 96:1–12

    Article  CAS  Google Scholar 

  • Praticò D (2008) Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann N Y Acad Sci 1147:70–78

    Article  PubMed  CAS  Google Scholar 

  • Saavedra L, Mohamed A, Ma V, Posse Kar, de Chaves S (2007) Internalization of beta-amyloid peptide by primary neurons in the absence of apolipoprotein E. J Biol Chem 282:35722–35732. doi:10.1074/jbc.M701823200

    Article  PubMed  CAS  Google Scholar 

  • Sagi SA, Weggen S, Eriksen J, Golde TE, Koo EH (2003) The non-cyclooxygenase targets of non-steroidal anti-inflammatory drugs, lipoxygenases, peroxisome proliferator-activated receptor, inhibitor of kappa B kinase, and NF kappa B, do not reduce amyloid beta 42 production. J Biol Chem 278:31825–31830. doi:10.1074/jbc.M303588200

    Article  PubMed  CAS  Google Scholar 

  • Scapagnini G, Colombrita C, Amadio M, D’Agata V, Arcelli E, Sapienza M, Quattrone A, Calabrese V (2006) Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid Redox Signal 8:395–403. doi:10.1089/ars.2006.8.395

    Article  PubMed  CAS  Google Scholar 

  • Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177. doi:10.1038/22124

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:A23–A31

    Google Scholar 

  • Serpell LC (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502:16–20

    PubMed  CAS  Google Scholar 

  • Sgarbossa A, Buselli D, Lenci F (2008) In vitro perturbation of aggregation processes in beta-amyloid peptides: a spectroscopic study. FEBS Lett 582:3288–3292. doi:10.1016/j.febslet.2008.08.039

    Article  PubMed  CAS  Google Scholar 

  • Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann N Y Acad Sci 1056:206–217. doi:10.1196/annals.1352.010

    Article  PubMed  CAS  Google Scholar 

  • Sorenghan B, Kosmoski J, Glabe C (1994) Surfactant properties of Alzheimer’s A beta peptides and the mechanism of amyloid aggregation. J Biol Chem 269:28551–28554

    Google Scholar 

  • Stellato F, Minestrina G, Dalla Serra M, Potrich C, Tomazzolli R, Meyer-Klaucke W, Morante S (2006) Metal binding in amyloid b-peptides shows intra- and inter-peptide coordination modes. Eur Biophys J 35:340–351. doi:10.1007/s00249-005-0041-7

    Article  PubMed  CAS  Google Scholar 

  • Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739. doi:10.1006/jmbi.1997.1348

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L Jr, Eckman C, Golde TE, Younkin SG (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264:1336–1340. doi:10.1126/science.8191290

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Miura T, Takeuchi H (2001) Inhibitory effect of copper(II) on zinc(II)-induced aggregation of amyloid b-peptide. Biochem Biophys Res Commun 285:991–996. doi:10.1006/bbrc.2001.5263

    Article  PubMed  CAS  Google Scholar 

  • Tateishi J (2000) Subacute myelo-optico-neuropathy: clioquinol intoxication in humans and animals. Neuropathology 20:20–24. doi:10.1046/j.1440-1789.2000.00296.x

    Article  Google Scholar 

  • Teplow DB (2006) Preparation of amyloid beta-protein for structural and functional studies. Methods Enzymol 413:20–33. doi:10.1016/S0076-6879(06)13002-5

    Article  PubMed  CAS  Google Scholar 

  • Tycko R (2003) Insights into the amyloid folding problem from solid-state NMR. Biochemistry 42:3151–3159. doi:10.1021/bi027378p

    Article  PubMed  CAS  Google Scholar 

  • Vasto S, Moccheggiani E, Malavolta M et al (2007) Zn and inflammatory/immune response in aging. Ann N Y Acad Sci 1100:111–122. doi:10.1196/annals.1395.009

    Article  PubMed  CAS  Google Scholar 

  • Vasto S, Candore G, Listi F et al (2008) Inflammation, genes and Zn in Alzheimer’s disease. Brain Res Brain Res Rev 58:96–105. doi:10.1016/j.brainresrev.2007.12.001

    Article  CAS  Google Scholar 

  • Verdier Y, Zarándi M, Penke B (2004) Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. J Pept Sci 10:229–248. doi:10.1002/psc.573

    Article  PubMed  CAS  Google Scholar 

  • Verdile G, Fuller S, Atwood CS, Laws SM, Gandy SE, Martins RN (2004) The role of beta amyloid in Alzheimer’s disease: still a cause of everything or the only one who got caught? Pharmacol Res 50:397–409. doi:10.1016/j.phrs.2003.12.028

    Article  PubMed  CAS  Google Scholar 

  • Walshe DM, Selkoe DJ (2007) Aβ oligomers a decade of discovery. J Neurochem 101:1172–1184. doi:10.1111/j.1471-4159.2006.04426.x

    Article  CAS  Google Scholar 

  • Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839. doi:10.1021/bi001048s

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Townsend M, Podlisny MB, Shankar GM, Fadeeva JV, Agnaf OE, Hartley DM, Selkoe DJ (2005) Certain inhibitors of synthetic amyloid beta-peptide (Abeta) fibrillogenesis block oligomerization of natural Abeta and thereby rescue long-term potentiation. J Neurosci 25:2455–2462. doi:10.1523/JNEUROSCI.4391-04.2005

    Article  PubMed  CAS  Google Scholar 

  • Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414:212–216. doi:10.1038/35102591

    Article  PubMed  CAS  Google Scholar 

  • Weiner HL, Frenkel D (2006) Immunology and immunotherapy of Alzheimer’s disease. Nat Rev Immunol 6:404–416. doi:10.1038/nri1843

    Article  PubMed  CAS  Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygenand nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    PubMed  CAS  Google Scholar 

  • Wisniewski T, Ghiso J, Frangione B (1997) Biology of Aβ amyloid in Alzheimer’s disease. Neurobiol Dis 4:313–328. doi:10.1006/nbdi.1997.0147

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901. doi:10.1074/jbc.M404751200

    Article  PubMed  CAS  Google Scholar 

  • Yao Z, Drieu K, Papadopoulos V (2001) The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from beta-amyloid-induced cell death by inhibiting the formation of beta-amyloid-derived diffusible neurotoxic ligands. Brain Res 889:181–190. doi:10.1016/S0006-8993(00)03131-0

    Article  PubMed  CAS  Google Scholar 

  • Yin YI, Bassit B, Zhu L, Yang X, Wang C, Li YM (2007a) Alzheimer’s disease: Mental plaque removal. J Biol Chem 28:23639–23644. doi:10.1074/jbc.M704601200

    Article  CAS  Google Scholar 

  • Yin YI, Bassit B, Zhu L, Yang X, Wang C, Li YM (2007b) γ-Secretase substrate Concentration Modulates the Abeta42/Abeta40 Ratio: implications for Alzheimer’s disease. J Biol Chem 28:23639–23644. doi:10.1074/jbc.M704601200

    Article  CAS  Google Scholar 

  • Yoon KH, Lee J, Cho J (2004) Gossypin protects primary cultured rat cortical cells from oxidative stress- and beta-amyloid-induced toxicity. Arch Pharm Res 27:454–459. doi:10.1007/BF02980089

    Article  PubMed  CAS  Google Scholar 

  • Zatta P, Tognon G, Carampin P (2003) Melatonin prevents free radical formation due to the interaction between beta-amyloid peptides and metal ions. J Pineal Res 35:98–103. Al(III), Zn(II), Cu(II), Mn(II), Fe(II). doi:10.1034/j.1600-079X.2003.00058.x

    Google Scholar 

  • Zhao BL, Li X, He RG, Cheng SJ, Xin WJ (1989) Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biophys 14:175–185

    PubMed  CAS  Google Scholar 

  • Zhu X, Smith MA, Perry G, Aliev G (2004) Mitochondrial failures in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 19:345–352. doi:10.1177/153331750401900611

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I wish to thank Dr. Daniela Giacomazza for critical reading of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Di Carlo.

Additional information

Proceedings of the XIX Congress of the Italian Society of Pure and Applied Biophysics (SIBPA), Rome, September 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Carlo, M. Beta amyloid peptide: from different aggregation forms to the activation of different biochemical pathways. Eur Biophys J 39, 877–888 (2010). https://doi.org/10.1007/s00249-009-0439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0439-8

Keywords

Navigation