Skip to main content
Log in

Spectroscopic and calorimetric studies on the interaction of human serum albumin with DPPC/PEG:2000-DPPE membranes

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Site specific spectroscopic techniques and differential scanning calorimetry were used to study human serum albumin (HSA) in the absence and in the presence of membranes composed of dipalmitoylphosphatidylcholine (DPPC) and poly(ethylene glycol:2000)-dipalmitoylphosphatidylethanolamine (PEG:2000-DPPE). Electron spin resonance (ESR) of a maleimide spin-label (5-MSL) covalently bound to the free sulfhydryl group at the unique cystein Cys-34 in domain I, intrinsic fluorescence of the single tryptophan Trp-214 in domain II, and extrinsic fluorescence of p-nitrophenyl anthranilate conjugated with tyrosine Tyr-411 in domain III were employed to study HSA dispersions with or without polymer-grafted membranes. On adsorbing at the DPPC membrane surfaces, domain I assumes a more loosened conformation and partitioning of the spin-labelled protein between the aqueous phase and the interfacial region of lipid membranes is observed by ESR. Domain II and III undergo a local structural arrangement which leads Trp-214 and Tyr-411 to come closer and causes intrinsic fluorescence quenching. The influence of DPPC bilayers on HSA is characterized both by a decrease of the thermal unfolding enthalpy and by a slight increase of the transition temperature, T t, of the protein. The lipid induced effects on HSA are progressively reduced on increasing the amounts of PEG:2000-DPPE mixed with DPPC from the mushroom regime to the brush regime. Primary protein adsorption at the lipid surfaces is abolished at 1 mol% of the polymer-lipid, whereas the secondary protein adsorption at the polymer-brush leads to a further increase of both transition enthalpy and T t relative to the case of aqueous dispersions of HSA alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abreu MSC, Estronca LMBB, Moreno MJ, Vaz WLC (2003) Binding of a fluorescent lipid amphiphile to albumin and its transfer to lipid bilayer membranes. Biophys J 84:386–399

    Article  Google Scholar 

  • Bartucci R, Pantusa M, Marsh D, Sportelli L (2002) Interaction of human serum albumin with membranes containing polymer-grafted lipids: spin-label ESR studies in the mushroom and brush regimes. Biochim Biophys Acta 1564:237–242

    Article  Google Scholar 

  • Bosker WTE, Iakovlev PA, Norde W, Cohen Stuart MA (2005) BSA adsorption on bimodal PEO brushes. J Colloid Interface Sci 286:496–503

    Article  Google Scholar 

  • Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:152–203

    Google Scholar 

  • Chiu GN, Bally MB, Mayer LD (2001) Selective protein interactions with phosphatidylserine containing liposomes alter the steric stabilization properties of poly(ethylene glycol). Biochim Biophys Acta 1510:56–69

    Article  Google Scholar 

  • De Simone F, Guzzi R, Sportelli L, Marsh D, Bartucci R (2007) Electron spin-echo studies of spin-labelled lipid membranes and free fatty acids interacting with human serum albumin. Biochim Biophys Acta 1768:1541–1549

    Article  Google Scholar 

  • Dimitrova MN, Matsumura H, Dimitrova A, Neitchev VZ (2000) Interaction of albumins from different species with phospholipid liposomes. Multiple binding sites system. Int J Biol Macromol 27:187–194

    Article  Google Scholar 

  • Dos Santos N, Allen C, Doppen AM, Anantha M, Cox KAK, Gallagher RC, Karlsson G, Edwards K, Kenner G, Samuels L, Webb MS, Bally MB (2007) Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta 1768:1367–1377

    Article  Google Scholar 

  • Du H, Chandaroy P, Hui SW (1997) Grafted poly(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochim Biophys Acta 1326:236–248

    Article  Google Scholar 

  • Efremova NV, Bondurant B, O’Brien DF, Leckband DE (2000) Measurements of interbilayer forces and protein adsorption on uncharged lipid bilayers displaying poly(ethylene glycol) chains. Biochemistry 39:3441–3451

    Article  Google Scholar 

  • Fang F, Szleifer I (2006) Controlled release of proteins from polymer-modified surfaces. Proc Natl Acad Sci 103:5769–5774

    Article  ADS  Google Scholar 

  • Fang F, Satulovsky J, Szleifer I (2005) Kinetics of protein adsorption and desorption on surface with grafted polymers. Biophys J 89:1516–1533

    Article  Google Scholar 

  • Faruggia B, Picò GA (1999) Thermodynamic features of the chemical and thermal denaturations of human serum albumin. Int J Biol Macromol 26:317–323

    Article  Google Scholar 

  • Galantai R, Bardos-Nagy I (2000) The interaction of human serum albumin and model membranes. Int J Pharm 195:207–218

    Article  Google Scholar 

  • Galantai R, Bardos-Nagy I, Modos K, Kardos J, Zavodszky P, Fidy J (2000) Serum albumin-lipid membrane interaction influencing the uptake of porphyrins. Arch Biochem Biophys 373:261–270

    Article  Google Scholar 

  • Graceffa P, Lehrer SS (1984) Dynamic equilibrium between the two conformational states of spin-label tropomyosin. Biochemistry 23:2606–2612

    Article  Google Scholar 

  • Griffith OH, Jost PC (1976) Lipid spin labels in biological membranes. In: Berliner LJ (ed) Spin labeling. theory and applications. Academic Press, New York, pp 453–523

    Google Scholar 

  • Hagag N, Birnbaum ER, Darnall DW (1983) Resonance energy transfer between cysteine-34, tryptophan-214 and tyrosine-411 of human serum albumin. Biochemistry 22:2420–2427

    Article  Google Scholar 

  • Halperin A (1999) Polymer brushes that resist adsorption of model proteins: design parameters. Langmuir 15:2525–2533

    Article  Google Scholar 

  • Hashizaki K, Taguchi H, Sakai H, Abe M, Saito Y, Ogawa N (2006) Carboxyfluorescein leakage from poly(ethylene glycol)-grafted liposomes induced by the interaction with serum. Chem Farm Bull 54:80–84

    Article  Google Scholar 

  • He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  ADS  Google Scholar 

  • Jeon SI, Andrade JD (1991) Protein surface interactions in the presence of polyethylene oxide: 2. effect of protein size. J Colloid Interface Sci 142:159–166

    Article  Google Scholar 

  • Jeon SI, Lee JH, Andrade JD, De Gennes PG (1991) Protein surface interactions in the presence of polyethylene oxide: 1. simplified theory. J Colloid Interface Sci 142:149–158

    Article  Google Scholar 

  • Jost P, Griffith OH (1976) Instrumental aspects of spin labelling. In: Berliner LJ (ed) Spin labeling. theory and applications. Academic Press, New York, pp 251–272

    Google Scholar 

  • Krishnakumar SS, Panda D (2002) Spatial relationship between the prodan site, Trp-124, and Cys-34 residues in human serum albumin and loss of structure through incremental unfolding. Biochemistry 41:7443–7452

    Article  Google Scholar 

  • Ladokhin AS, Jayasinghe S, White SH (2000) How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal Biochem 285:235–245

    Article  Google Scholar 

  • Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New York

    Google Scholar 

  • Lasic DD (1993) Liposomes: from physics to applications. Elsevier, Amsterdam

    Google Scholar 

  • Lasic DD, Martin F (1995) Stealth liposomes. CRC Press, Boca Raton

    Google Scholar 

  • Lasic DD, Needham D (1995) The “stealth” liposome: a prototypical biomaterial. Chem Rev 95:2601–2628

    Article  Google Scholar 

  • Liu X, Shang L, Jiang X, Dong S, Wang E (2006) Conformational changes of β-lactoglobulin induced by anionic phospholipid. Biophys Chem 121:218–223

    Article  Google Scholar 

  • Marsh D (1981) Electron spin resonance: spin labels. In: Grell E (ed) Membrane spectroscopy. Springer, Berlin, pp 51–115

    Google Scholar 

  • Marsh D (1982) Electron spin resonance: spin label probes. In: Metcalfe JC, Hesketh TR (eds) Techniques in lipids and membrane biochemistry, vol B4/II. Elsevier, Amsterdam, B426/1–B426/44

    Google Scholar 

  • Marsh D, Horvath LI (1989) Spin label studies of the structure and dynamics of lipids and proteins in membranes. In: Hoff AJ (ed) Advanced EPR applications in biology and biochemistry. Elsevier, Amsterdam, pp 707–752

    Google Scholar 

  • Marsh D, Horvath LI (1998) Structure, dynamics and composition of the lipid–protein interface: perspectives from spin-labeling. Biochim Biophys Acta 1376:267–296

    Google Scholar 

  • Marsh D, Bartucci R, Sportelli L (2003) Lipid membranes with grafted polymers: physicochemical aspects. Biochim Biophys Acta 1615:33–59

    Article  Google Scholar 

  • Michnik A, Michalik K, Drzazga Z (2005) Stability of bovine serum albumin at different pH. J Therm Anal Calorim 80:399–406

    Article  Google Scholar 

  • Muzammil S, Kumar Y, Tayyab S (1999) Molten globule-like state of human serum albumin at low pH. Eur J Biochem 266:26–32

    Article  Google Scholar 

  • Narazaki R, Maruyama T, Otagiri M (1997) Probing the cysteine 34 residue in human serum albumin using fluorescence techniques. Biochim Biophys Acta 1338:275–281

    Google Scholar 

  • Norde W, Gage D (2004) Interaction of bovine serum albumin and human blood plasma with PEO-tethered surfaces: influence of PEO chain length, grafting density and temperature. Langmuir 20:4162–4167

    Article  Google Scholar 

  • Pantusa M, Sportelli L, Bartucci R (2005) Transfer of stearic acids from albumin to polymer-grafted lipid containing membranes probed by spin-label electron spin resonance. Biophys Chem 114:121–127

    Article  Google Scholar 

  • Peters T (1995) All about albumin: biochemistry, genetics and medical applications. Academic Press, San Diego

    Google Scholar 

  • Pico GA (1997) Thermodynamic features of the thermal unfolding of human serum albumin. Int J Biol Macromol 20:63–73

    Article  Google Scholar 

  • Price ME, Cornelius RM, Brash JL (2001) Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma. Biochim Biophys Acta 1512:191–205

    Article  Google Scholar 

  • Ragi C, Sedaghat-Herati MR, Ahmed Ouameur A, Tajmir-Riahi HA (2005) The effects of poly(ethylene glycol) on the solution structure of human serum albumin. Biopolymers 78:231–236

    Article  Google Scholar 

  • Ren J, Lew S, Wang Z, London E (1997) Transmembrane orientation of hydrophobic α-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry 36:10213–10220

    Article  Google Scholar 

  • Rixman MA, Dean D, Ortiz C (2003) Nanoscale intermolecular interaction between human serum albumin and low grafting density surfaces of poly(ethylene oxide). Langmuir 19:9357–9372

    Article  Google Scholar 

  • Santra MK, Banerjee A, Rahaman O, Panda D (2005) Unfolding pathways of human serum albumin: evidence for sequential unfolding of its three domains. Int J Biol Macromol 37:200–204

    Article  Google Scholar 

  • Shrake A, Frazier D, Schwarz FP (2006) Thermal stabilization of human albumin by medium- and short-chain n-alkyl fatty acid anions. Biopolymers 81:235–248

    Article  Google Scholar 

  • Sterk M, Hauser H, Marsh D, Gehring H (1994) Probing conformational states of spin-labeled aspartate aminotransterase by ESR. Eur J Biochem 219:993–1000

    Article  Google Scholar 

  • Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Cristal structure of human serum albumin at 2.5 Å resolution. Protein Eng 12:439–446

    Article  Google Scholar 

  • Szleifer I (1997) Protein adsorption on surface with grafted polymers: a theoretical approach. Biophys J 72:595–612

    Google Scholar 

  • Wang X, Zhang Y, Wu J, Wang M, Cui G, Li J, Brezesinski G (2002) Dynamical and morphological studies on the adsorption and penetration of human serum albumin into phospholipid monolayers at the air/water interface. Colloids Surf B 23:339–347

    Article  Google Scholar 

  • Wang X, He Q, Zheng S, Brezesinski G, Mohwald H, Li (2004) J structural changes of phospholipid monolayers caused by coupling of human serum albumin: a GIXD study at the air/water interface. J Phys Chem B 108:14171–14177

    Article  Google Scholar 

  • Wetzel R, Becker M, Behlke J, Billwitz H, Bohm S, Ebert B, Hamann H, Krumbiegel J, Lassmann G (1980) Temperature behaviour of human serum albumin. Eur J Biochem 104:469–478

    Article  Google Scholar 

Download references

Acknowledgments

Manuela Pantusa thanks the University of Calabria for a research grant. This work was financially supported by University of Calabria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Bartucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantusa, M., Sportelli, L. & Bartucci, R. Spectroscopic and calorimetric studies on the interaction of human serum albumin with DPPC/PEG:2000-DPPE membranes. Eur Biophys J 37, 961–973 (2008). https://doi.org/10.1007/s00249-008-0314-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0314-z

Keywords

Navigation