Skip to main content
Log in

Selective deuteration of tryptophan and methionine residues in maltose binding protein: a model system for neutron scattering

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We describe methods that have been developed within the ILL-EMBL Deuteration Laboratory for the production of maltose binding protein (MBP) that has been selectively labelled either with deuterated tryptophan or deuterated methionine (single labelling), or both (double labelling). MBP is used as an important model system for biophysical studies, and selective labelling can be helpful in the analysis of small-angle neutron scattering (SANS) data, neutron reflection (NR) data, and high-resolution neutron diffraction data. The selective labelling was carried out in E. coli high-cell density cultures using auxotrophic mutants in minimal medium containing the required deuterated precursors. Five types of sample were prepared and studied: (1) unmodified hydrogenated MBP (H-MBP), (2) perdeuterated MBP (D-MBP), (3) singly labelled MBP with the tryptophan residues deuterated (D-trp MBP), (4) singly labelled MBP with methionine residues deuterated (D-met MBP) and (5) doubly labelled MBP with both tryptophan and methionine residues deuterated (D-trp/met MBP). Labelled samples were characterised by size exclusion chromatography, gel electrophoresis, light scattering and mass spectroscopy. Preliminary small-angle neutron scattering (SANS) experiments have also been carried out and show measurable differences between the SANS data recorded for the various labelled analogues. More detailed SANS experiments using these labelled MBP analogues are planned; the degree to which such data could enhance structure determination by SANS is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Artero JB, Härtlein M, McSweeney S, Timmins P (2005) A comparison of refined X-ray structures of hydrogenated and perdeuterated rat gamma E-crystallin in H 2 O and D 2 O. Acta Cryst D 61:1541–1549

    Article  Google Scholar 

  • Ben-Bassat A, Bauer K, Chang SY, Myambo K, Boosman A, Chang S (1987) Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol 169(2):751–757

    Google Scholar 

  • Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129:5656–5664

    Article  Google Scholar 

  • Callow P, Sukhodub A, Taylor J, Kneale G (2007) Shape and subunit organisation of the DNA methyltransferase M. Ahdl. J Mol Biol 69(1):177–185

    Article  Google Scholar 

  • Capel MS, Engelman DM, Freeborn BR, Kjeldgaard M, Langer JA, Ramakrishnan V, Schindler DG, Schneider DK, Schoenborn BP, Sillers I-Y, Yabuki S, Moore PB (1987) A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science 238:1403–1406

    Article  ADS  Google Scholar 

  • Dottavio-Martin D, Ravel JM (1978) Radiolabelling of proteins by reductive alkylation with [14C]formaldehyde and sodium cyanoborohydride. Anal Biochem 87(2):562–565

    Article  Google Scholar 

  • Forsyth VT, Myles D, Timmins P, Hartlein M (2001) Possibilities for the exploitation of biological deuteration in neutron scattering. In: Dianoux J (ed) Opportunities for neutron scattering in the 3rd millennium. Institut Laue Langevin publication, Grenoble, pp 47–54

  • Fox JD, Waugh DS (2003) Maltose-binding protein as a solubility enhancer. Methods Mol Biol 205:99–117

    Google Scholar 

  • Gardner KH, English AD, Forsyth VT (2004) New insights into the structure of poly (p-phenylene terephthalamide) from neutron fiber diffraction studies. Macromolecules 37(25):9654–9656

    Article  ADS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Louisville, pp 571–60

  • Grage SL, May RP, Holt SA, Moulin M, Haertlein M, de Planque M, Mendes GP, Contera SA, Turdzeladze T, Burck J, Martinac B, Forsyth VT, Watts A, Ulrich AS (2008) Opening of the mechanosenstitive channel protein studied by small-angle neutron scattering and neutron reflection (in preparation)

  • Haertlein M et al (2008) The ILL-EMBL Deuteration Laboratory: an advanced macromolecular labelling platform for neutron scattering and NMR (in preparation)

  • Hauptman HA, Langs DA (2003) The phase problem in neutron crystallography. Acta Cryst A 59:250–4

    Article  Google Scholar 

  • Hazemann I, Dauvergne M.T, Blakeley MP, Meilleur F, Haertlein M, Van Dorsselaer A, Mitschler A, MylesD, Podjarny A (2005) High-resolution neutron protein crystallography with radically small crystal volumes: application of perdeuteration to human aldose reductase. Acta Cryst D61:1413–1417

    Google Scholar 

  • Huque ME, Vogel HJ (1993) Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fragments. J Protein Chem 12(6):695–707

    Article  Google Scholar 

  • Jacrot B (1976) Study of biological structures by neutron scattering from solution. Rep Prog Phys 39(10):911–953

    Article  ADS  Google Scholar 

  • Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Ono AM, Guntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  ADS  Google Scholar 

  • King WA, Stone DB, Timmins PA, Narayanan T, von Brasch AAM, Mendelson RA, Curmi PMG (2005) Solution structure of the chicken skeletal muscle troponin complex via small-angle neutron and X-ray scattering. J Mol Biol 345:797–815

    Article  Google Scholar 

  • Kuzmanovic DA, Elashvili I, Wick C, O’Connell C, Krueger S (2003) Bacteriophage MS2: molecular weight and spatial distribution of the protein and RNA components by small-angle neutron scattering and virus counting. Structure 11:1339–1348

    Article  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen bonding system in cellulose II from a Neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946

    Article  Google Scholar 

  • Liu X, Hanson BL, Langan P, Viola RE (2007) The effect of deuteration on protein structure: a high-resolution comparison of hydrogenous and perdeuterated haloalkane dehalogenase. Acta Cryst D63(9):1000–1008

    Google Scholar 

  • Lu JR, Thomas RK, Penfold J (2000) Surfactant layers at the air/water interface: structure and composition. Adv Colloid Interf Sci 84(1–3):143–304

    Article  Google Scholar 

  • Maina CV, Riggs PD, Grandea AG, Slatko BE, Moran LS, Tagliamonte JA, McReynolds A, Guan CD (1988) An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene 71:5–373

    Google Scholar 

  • May RP, Nowotny V, Nowotny P, Voss H, Nierhaus KH (1991) Inter-protein distances within the large subunit from Escherichia coli ribosomes. EMBO J 11:373–378

    Google Scholar 

  • Nishiyama Y, Chanzy H, Langan P (2002) Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  Google Scholar 

  • Paciaroni A, Orecchini A, Cornicchi E, Marconi M, Petrillo C, Sacchetti F, Haertlein M, Moulin M, Tarek M (2008) Low-frequency vibrational dynamicsof protein hydration water; comparison with hexagonal and amporphous ices (submitted)

  • Pardon JF, Worcester DL, Wooley JC, Cotter RI, Lilley DMJ, Richards BM (1977) The structure of the chromatin core particle in solution. Nucl Acids Res 4(9):3199–3214

    Article  Google Scholar 

  • Parrot I, Haertlein M, Forsyth VT (2008) Enzymatic synthesis of selectively labelled repetitive sequence DNA (in preparation)

  • Pebay-Peyroula E, Garavito RM, Rosenbusch JP, Zulauf M, Timmins PA (1995) Detergent structure in tetragonal crystals of Ompf porin. Structure 3:1051–1059

    Article  Google Scholar 

  • Petoukhov MV, Eady NAJ, Brown KA, Svergun DI (2002) Addition of missing loops and domains to protein models using X-ray solution scattering. Biophys J 83:3113–3125

    Article  Google Scholar 

  • Petoukhov MV, Monie TP, Allain F-T, Matthews S, Curry S, Svergun DI (2006) Conformation of polypyrimidine tract binding protein in solution. Structure 14:1021–1027

    Article  Google Scholar 

  • Petoukhov MV, Svergun DI (2005) Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 89:1237–1250

    Article  Google Scholar 

  • Petoukhov MV, Svergun DI (2006) Joint use of small-angle X-ray and neutron scattering to study biological macromolecules in solution. Eur Biophys J 35:567–576

    Article  Google Scholar 

  • Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM (1993) Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362(6417):219–223

    Article  ADS  Google Scholar 

  • Ramesh V, Frederick RO, Syed SEH, Gibson CF, Yang J-C, Roberts GCK (1994) The interactions of Escherichia coli trp repressor with tryptophan and with an operator oligonucleotide. Eur J Biochem 225:601–608

    Article  Google Scholar 

  • Réat V, Patzelt H, Pfister C, Ferrand M, Oesterhelt D, Zaccai G (1998) Dynamics of different functional parts of bacteriorhodopsin: H–2H labelling and neutron scattering. Proc Natl Acad Sci (USA) 95:4970–4975

    Article  ADS  Google Scholar 

  • Schwartz MO, Kellermann O, Szmelcman S, Hazelbauer GL (1976) Further studies on the binding of maltose to the maltose binding protein of Escherichia coli. Eur J Biochem 71:167–170

    Article  Google Scholar 

  • Sharff AJ, Rodseth LE, Spurlino JC, Quiocho FA (1992) Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry 31:10657–10663

    Article  Google Scholar 

  • Shilton BH, Shuman HA, Mowbray SL (1996a) Crystal structures and solution conformations of a dominant-negative mutant of Escherichia coli maltose-binding protein. J Mol Biol 264:364–376

    Article  Google Scholar 

  • Shilton BH, Flocco MM, Nilson M, Mowbray SL (1996b) Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding proteins. J Mol Biol 264:350–363

    Article  Google Scholar 

  • Spurlino JC, Lu G-Y, Quiocho FA (1991) The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. J Biol Chem 266:5202–5219

    Google Scholar 

  • Sreenath HK, Bingman CA, Buchan BW, Seder KD, Burns BT, Geetha HV, Jeon WB, Vojtik FC, Aceti DJ, Frederick RO, Phillips GN, Fox BG (2005) Protocols for production of selenomethionine-labelled proteins in 2-L polyethylene terephthalate bottles using auto-induction medium. Protein Expr Purif 40(2):256–267

    Article  Google Scholar 

  • Stuhrman HB (1974) Neutron small-angle scattering of biological macromolecules in solution. J Appl Cryst 7:173–178

    Article  Google Scholar 

  • Svergun DI, Richard S, Koch MHJ, Sayers Z, Kuprin S, Zaccai G (1998) Protein hydration in solution: experimental observation by X-ray and neutron scattering. Proc Natl Acad Sci USA 95(5):2267

    Article  ADS  Google Scholar 

  • Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76(6):2879–2886

    Google Scholar 

  • Svergun DI, Petoukhov MV, Koch MHJ (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80:2946–2953

    Google Scholar 

  • Svergun DI, Koch M, Konarev P, Timmins PA, Volkov V, Zaccai G (2000) A contrast variation study of the tertiary structure of selectively deuterated proteins, Beamtime application at Institut Laue Langevin, reference number 8-03-368

  • Tehei M, Franzetti B, Wood K, Gabel F, Fabiani E, Jasnin M, Zamponi M, Oesterhelt D, Zaccai G, Ginzburg M, Ginzburg BZ (2007) Neutron scattering reveals extremely slow cell water in a Dead Sea organism. Proc Natl Acad Sci USA 104:766–771

    Article  ADS  Google Scholar 

  • Timmins PA, Zaccai G (1988) Low resolution structures of biological complexes studied by neutron scattering. Eur Biop J Bioph Lett 15(5):257–268

    Google Scholar 

  • Varga K, Azlimikova L, Parrot I, Dauvergne M-Th, Haertelin M, Forsyth VT, Watts A (2007) NMR crystallography: the effect of deuteration on high resolution 13C solid state NMR spectra of a 7-TM protein. Biochim Biophys Acta 1768:3029–3035

    Article  Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37(23):8548–8555

    Article  ADS  Google Scholar 

  • Walter TS, Meier C, Assenberg R, Au KF, Ren J, Verma A, Nettleship JE, Owens RJ, Stuart DI, Grimes JM (2006) Lysine methylation as a routine rescue strategy for protein crystallization. Structure 14(11):1617–1622

    Article  Google Scholar 

  • Waugh DS (1996) Genetic tools for selective labeling of proteins with α-15N amino acids. J Biomol NMR 8:184–192

    Article  Google Scholar 

  • Wood K, Frolich A, Paciaroni, Moulin M, Hartlein M, Zaccai G, Tobias D, Weik M (2008) Coincidence of hydration-water and soluble-protein dynamical transitions: direct measurements by neutron scattering and MD simulations (submitted)

  • Zheng W, Doniach S (2002) Protein structure prediction constrained by solution X-ray scattering data and structural homology identification. J Mol Biol 316:173–187

    Article  Google Scholar 

  • Zukin RS (1979) Evidence for a conformational change in Escherichia coli maltose receptor by excited-state fluorescence lifetime data. Biochemistry 18:2139–2145

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union under contract RII3-CT-2003-505925. It has also benefited from previous development work carried out under HPRI-2001-50065. We acknowledge the EPSRC for support under grants EP/C015452/1 and GR/R47950/01 and the Institut de Biologie Structurale in Grenoble for the use of their mass spectroscopy service. The authors are also very grateful for advice and assistance from all members of the ILL-EMBL Deuteration Laboratory, in particular Martine Moulin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Haertlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laux, V., Callow, P., Svergun, D.I. et al. Selective deuteration of tryptophan and methionine residues in maltose binding protein: a model system for neutron scattering. Eur Biophys J 37, 815–822 (2008). https://doi.org/10.1007/s00249-008-0280-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0280-5

Keywords

Navigation