Skip to main content
Log in

Mechanisms of protein folding

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Understanding the mechanism by which a polypeptide chain folds into its native structure is a central problem of modern biophysics. The collaborative efforts of experimental and theoretical studies recently raised the tantalizing possibility to define a unifying mechanism for protein folding. In this review we summarize some of these intriguing advances and analyze them together with a discussion on the new findings concerning the so-called downhill folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

TS:

Transition state

DC:

Diffusion–collision

NC:

Nucleation–condensation

En-HD:

Engrailed homeodomain

CI2:

Chymotrypsin inhibitor 2

VHP:

Chicken villin headpiece

References

  • Abkevich VI, Gutin AM, Shakhnovich EI (1994) Specific nucleus as the transition state for protein folding: evidence from the lattice model. Biochemistry 33:10026–10036

    Article  Google Scholar 

  • Anfinsen CB, Haver E, Sela M, White FHJ (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA 47:1309–1314

    Article  ADS  Google Scholar 

  • Bashford D, Cohen FE, Karplus M, Kuntz ID, Weaver DL (1988) Diffusion–collision model for the folding kinetics of myoglobin. Proteins 4:211–227

    Article  Google Scholar 

  • Bieri O, Wirz J, Hellrung B, Schutkowski M, Drewello M, Kiefhaber T (1999) The speed limit for protein folding measured by triplet–triplet energy transfer. Proc Natl Acad Sci USA 96:9597–95601

    Article  ADS  Google Scholar 

  • Borgia A, Bonivento D, Travaglini-Allocatelli C, Di Matteo A, Brunori M (2006) Unveiling a hidden folding intermediate in C-type cytochromes by protein engineering. J Biol Chem 281:9331–9336

    Article  Google Scholar 

  • Borreguero JM, Ding F, Buldyrev SV, Stanley HE, Dokholyan NV (2004) Multiple folding pathways of the SH3 domain. Biophys J 87:521–533

    Article  Google Scholar 

  • Brockwell DJ, Radford SE (2007) Intermediates: ubiquitous species on folding energy landscapes? Curr Opin Struct Biol 17:30–37

    Article  Google Scholar 

  • Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21:167–195

    Article  Google Scholar 

  • Buscaglia M, Kubelka J, Eaton WA, Hofrichter J (2005) Determination of ultrafast protein folding rates from loop formation dynamics. J Mol Biol 347:657–664

    Article  Google Scholar 

  • Caflisch A (2004) Protein folding: simple models for a complex process. Structure 12:1750–1752

    Article  Google Scholar 

  • Capaldi AP, Kleanthous C, Radford SE (2002) Im7 folding mechanism: misfolding on a path to the native state. Nat Struct Biol 9:209–216

    Google Scholar 

  • Daggett V, Fersht AR (2003) Is there a unifying mechanism for protein folding? Trends Biochem Sci 28:18–25

    Article  Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    Article  ADS  Google Scholar 

  • Ferguson N, Capaldi AP, James R, Kleanthous C, Radford SE (1999) Rapid folding with and without populated intermediates in the homologous four-helix proteins Im7 and Im9. J Mol Biol 286:1597–1608

    Article  Google Scholar 

  • Ferguson N, Schartau PJ, Sharpe TD, Sato S, Fersht AR (2004) One-state downhill versus conventional protein folding. J Mol Biol 344:295–301

    Article  Google Scholar 

  • Ferguson N, Sharpe TD, Johnson CM, Schartau PJ, Fersht AR (2007) Structural biology: analysis of ‘downhill’ protein folding. Nature 445:E14–E15

    Article  ADS  Google Scholar 

  • Fersht AR (1995) Optimization of rates of protein folding: the nucleation–condensation mechanism and its implications. Proc Natl Acad Sci USA 21:10869–10873

    Article  Google Scholar 

  • Fersht AR (2000) Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism. Proc Natl Acad Sci USA 97:1525–1529

    Article  ADS  Google Scholar 

  • Fersht AR, Sato S (2004) Phi-value analysis and the nature of protein-folding transition states. Proc Natl Acad Sci USA 101:7976–7981

    Article  ADS  Google Scholar 

  • Fersht AR, Matouschek A, Serrano L (1992) The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol 224:771–782

    Article  Google Scholar 

  • Friel CT, Capaldi AP, Radford SE (2003) Structural analysis of the rate-limiting transition states in the folding of Im7 and Im9: similarities and differences in the folding of homologous proteins. J Mol Biol 326:293–305

    Article  Google Scholar 

  • Friel CT, Beddard GS, Radford SE (2004) Switching two-state to three-state kinetics in the helical protein Im9 via the optimisation of stabilising non-native interactions by design. J Mol Biol 342:261–273

    Article  Google Scholar 

  • Garcia-Mira MM, Sadqi M, Fischer N, Sanchez-Ruiz JM, Muñoz V (2002) Experimental identification of downhill protein folding. Science 298:2191–2195

    Article  ADS  Google Scholar 

  • Gianni S, Travaglini-Allocatelli C, Cutruzzolà F, Bigotti MG, Brunori M (2001) Snapshots of protein folding. A study on the multiple transition state pathway of cytochrome c(551) from Pseudomonas aeruginosa. J Mol Biol 309:1177–1187

    Article  Google Scholar 

  • Gianni S, Guydosh NR, Khan F, Caldas TD, Mayor U, White GW, DeMarco ML, Daggett V, Fersht AR (2003a) Unifying features in protein-folding mechanisms. Proc Natl Acad Sci USA 100:13286–13291

    Article  ADS  Google Scholar 

  • Gianni S, Travaglini-Allocatelli C, Cutruzzolà F, Brunori M, Shastry MC, Roder H (2003b) Parallel pathways in cytochrome c(551) folding. J Mol Biol 330:1145–1152

    Article  Google Scholar 

  • Gianni S, Calosci N, Aelen JM, Vuister GW, Brunori M, Travaglini-Allocatelli C (2005) Kinetic folding mechanism of PDZ2 from PTP-BL. Protein Eng Des Sel 18:389–395

    Article  Google Scholar 

  • Gianni S, Brunori M, Travaglini-Allocatelli C (2007a) Plasticity of the protein folding landscape: switching between on- and off-pathway intermediates. Arch Biochem Biophys 466:172–176

    Article  Google Scholar 

  • Gianni S, Geierhaas CD, Calosci N, Jemth P, Vuister GW, Travaglini-Allocatelli C, Vendruscolo M, Brunori M (2007b) A PDZ domain recapitulates a unifying mechanism for protein folding. Proc Natl Acad Sci USA 104:128–133

    Article  ADS  Google Scholar 

  • Gianni S, Ivarsson Y, Jemth P, Brunori M, Travaglini-Allocatelli C (2007c) Identification and characterization of protein folding intermediates. Biophys Chem 128:105–113

    Article  Google Scholar 

  • Gorski SA, Capaldi AP, Kleanthous C, Radford SE (2001) Acidic conditions stabilise intermediates populated during the folding of Im7 and Im9. J Mol Biol 312:849–863

    Article  Google Scholar 

  • Hagen SJ (2003) Exponential decay kinetics in “downhill” protein folding. Proteins 50:1–4

    Article  Google Scholar 

  • Hagen SJ (2007) Probe-dependent and nonexponential relaxation kinetics: unreliable signatures of downhill protein folding. Proteins 68:205–217

    Article  Google Scholar 

  • Huang CY, Klemke JW, Getahun Z, DeGrado WF, Gai F (2001) Temperature-dependent helix-coil transition of an alanine based peptide. J Am Chem Soc 123:9235–9238

    Article  Google Scholar 

  • Huang F, Sato S, Sharpe TD, Ying L, Fersht AR (2007) Distinguishing between cooperative and unimodal downhill protein folding. Proc Natl Acad Sci USA 104:123–127

    Article  ADS  Google Scholar 

  • Hubner IA, Lindberg M, Haglund E, Oliveberg M, Shakhnovich EI (2006) Common motifs and topological effects in the protein folding transition state. J Mol Biol 359:1075–1085

    Article  Google Scholar 

  • Itoh K, Sasai M (2006) Flexibly varying folding mechanism of a nearly symmetrical protein: B domain of protein A. Proc Natl Acad Sci USA 103:7298–7303

    Article  ADS  Google Scholar 

  • Itzhaki LS, Otzen DE, Fersht AR (1995) The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation–condensation mechanism for protein folding. J Mol Biol 254:260–288

    Article  Google Scholar 

  • Ivarsson Y, Travaglini-Allocatelli C, Jemth P, Malatesta F, Brunori M, Gianni S (2007) An on-pathway intermediate in the folding of a PDZ domain. J Biol Chem 282:8568–8572

    Article  Google Scholar 

  • Jackson SE (1998) How do small single-domain proteins fold? Fold Des 3:R81–91

    Article  Google Scholar 

  • Jackson SE, Fersht AR (1991) Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30:10428–10435

    Article  Google Scholar 

  • Jemth P, Gianni S, Day R, Li B, Johnson CM, Daggett V, Fersht AR (2004) Demonstration of a low-energy on-pathway intermediate in a fast-folding protein by kinetics, protein engineering, and simulation. Proc Natl Acad Sci USA 101:6450–6455

    Article  ADS  Google Scholar 

  • Juraszek J, Bolhuis PG (2006) Sampling the multiple folding mechanisms of Trp-cage in explicit solvent. Proc Natl Acad Sci USA 103:15859–15864

    Article  ADS  Google Scholar 

  • Karplus M, Weaver DL (1976) Protein-folding dynamics. Nature 260:404–406

    Article  ADS  Google Scholar 

  • Karplus M, Weaver DL (1994) Protein folding dynamics: the diffusion–collision model and experimental data. Protein Sci 3:650–668

    Article  Google Scholar 

  • Kiefhaber T (1995) Kinetic traps in lysozyme folding. Proc Natl Acad Sci USA 92:9029–9033

    Article  ADS  Google Scholar 

  • Knott M, Chan HS (2006) Criteria for downhill protein folding: calorimetry, chevron plot, kinetic relaxation, and single-molecule radius of gyration in chain models with subdued degrees of cooperativity. Proteins 65:373–391

    Article  Google Scholar 

  • Krantz BA, Mayne L, Rumbley J, Englander SW, Sosnick TR (2002) Fast and slow intermediate accumulation and the initial barrier mechanism in protein folding. J Mol Biol 324:359–371

    Article  Google Scholar 

  • Kubelka J, Hofrichter J, Eaton WA (2004) The protein folding ‘speed limit’. Curr Opin Struct Biol 14:76–88

    Article  Google Scholar 

  • Kubelka J, Chiu TK, Davies DR, Eaton WA, Hofrichter J (2006) Sub-microsecond protein folding. J Mol Biol 359:546–553

    Article  Google Scholar 

  • Lam AR, Borreguero JM, Ding F, Dokholyan NV, Buldyrev SV, Stanley HE, Shakhnovich E (2007) Parallel folding pathways in the SH3 domain protein. J Mol Biol 373:1348–1360

    Article  Google Scholar 

  • Lapidus LJ, Eaton WA, Hofrichter J (2002) Measuring dynamic flexibility of the coil state of a helix-forming peptide. J Mol Biol 319:19–25

    Article  Google Scholar 

  • Lazaridis T, Karplus M (1997) “New view” of protein folding reconciled with the old through multiple unfolding simulations. Science 278:1928–1931

    Article  ADS  Google Scholar 

  • Levinthal C (1968) Are there pathways for protein folding? J Chem Phys 65:44–45

    Google Scholar 

  • Lindberg MO, Oliveberg M (2007) Malleability of protein folding pathways: a simple reason for complex behaviour. Curr Opin Struct Biol 17:21–29

    Article  Google Scholar 

  • Lindberg M, Tangrot J, Oliveberg M (2002) Complete change of the protein folding transition state upon circular permutation. Nat Struct Biol 9:818–822

    Google Scholar 

  • Lipman EA, Schuler B, Bakajin O, Eaton WA (2003) Single-molecule measurement of protein folding kinetics. Science 301:1233–1235

    Article  ADS  Google Scholar 

  • Ma H, Gruebele M (2005) Kinetics are probe-dependent during downhill folding of an engineered lambda6-85 protein. Proc Natl Acad Sci USA 102:2283–2287

    Article  ADS  Google Scholar 

  • Matouschek A, Kellis JT Jr, Serrano L, Bycroft M, Fersht AR (1990) Transient folding intermediates characterized by protein engineering. Nature 346:440–445

    Article  ADS  Google Scholar 

  • Mayor U, Grossmann JG, Foster NW, Freund SM, Fersht AR (2003a) The denatured state of Engrailed homeodomain under denaturing and native conditions. J Mol Biol 333:977–991

    Article  Google Scholar 

  • Mayor U, Guydosh NR, Johnson CM, Grossmann JG, Sato S, Jas GS, Freund SMV, Alonso DOV, Daggett V, Fersht AR (2003b) The complete folding pathway of a protein from nanoseconds to microseconds. Nature 421:863–867

    Article  ADS  Google Scholar 

  • McCallister EL, Alm E, Baker D (2000) Critical role of beta-hairpin formation in protein G folding. Nat Struct Biol 7:669–673

    Article  Google Scholar 

  • Munoz V, Thompson PA, Hofrichter J, Eaton WA (1997) Folding dynamics and mechanism of beta-hairpin formation. Nature 390:196–199

    Article  ADS  Google Scholar 

  • Myers JK, Oas TG (1999) Contribution of a buried hydrogen bond to lambda repressor folding kinetics. Biochemistry 38:6761–6768

    Article  Google Scholar 

  • Neira JL, Davis B, Ladurner AG, Buckle AM, Gay Gde P, Fersht AR (1996) Towards the complete structural characterization of a protein folding pathway: the structures of the denatured, transition and native states for the association/folding of two complementary fragments of cleaved chymotrypsin inhibitor 2. Direct evidence for a nucleation–condensation mechanism. Fold Des 1:189–208

    Article  Google Scholar 

  • Nishimura C, Prytulla S, Dyson JH, Wright PE (2000) Conservation of folding pathways in evolutionarily distant globin sequences. Nat Struct Biol 7:679–686

    Article  Google Scholar 

  • Oliva FY, Munoz V (2004) A simple thermodynamic test to discriminate between two-state and downhill folding. J Am Chem Soc 126:8596–8597

    Article  Google Scholar 

  • Onuchic JN, Socci ND, Luthey-Schulten Z, Wolynes PG (1996) Protein folding funnels: the nature of the transition state ensemble. Fold Des 1:441–450

    Article  Google Scholar 

  • Onuchic JN, Luthey-Schulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 48:545–600

    Article  ADS  Google Scholar 

  • Otzen DE, Fersht AR (1997) Folding of circular and permuted chymotrypsin inhibitor 2: retention of the folding nucleus. J Mol Biol 37:8139–8146

    Google Scholar 

  • Rao F, Settanni G, Guarnera E, Caflisch A (2005) Estimation of protein folding probability from equilibrium simulations. J Chem Phys 122:184901

    Article  ADS  Google Scholar 

  • Religa TL, Markson JS, Mayor U, Freund SM, Fersht AR (2005) Solution structure of a protein denatured state and folding intermediate. Nature 437:1053–1056

    Article  ADS  Google Scholar 

  • Religa TL, Johnson CM, Vu DM, Brewer SH, Dyer RB, Fersht AR (2007) The helix-turn-helix motif as an ultrafast independently folding domain: the pathway of folding of engrailed homeodomain. Proc Natl Acad Sci USA 104:9272–9277

    Article  ADS  Google Scholar 

  • Sabelko J, Ervin J, Gruebele M (1999) Observation of strange kinetics in protein folding. Proc Natl Acad Sci USA 96:6031–6036

    Article  ADS  Google Scholar 

  • Sadqi M, Fushman D, Munoz V (2006) Atom-by-atom analysis of global downhill protein folding. Nature 442:317–321

    Article  ADS  Google Scholar 

  • Sanchez IE, Kiefhaber T (2003) Evidence for sequential barriers and obligatory intermediates in apparent two-state protein folding. J Mol Biol 325:367–376

    Article  Google Scholar 

  • Sato S, Fersht AR (2007) Searching for multiple folding pathways of a nearly symmetrical protein: temperature dependent phi-value analysis of the B domain of protein a. J Mol Biol 372:254–267

    Article  Google Scholar 

  • Schuler B, Lipman EA, Eaton WA (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419:743–747

    Article  ADS  Google Scholar 

  • Spudich GM, Miller EJ, Marqusee S (2004) Destabilization of the Escherichia coli RNase H kinetic intermediate: switching between a two-state and three-state folding mechanism. J Mol Biol 335:609–618

    Article  Google Scholar 

  • Travaglini-Allocatelli C, Gianni S, Brunori M (2004) A common folding mechanism in the cytochrome c family. Trends Biochem Sci 29:535–541

    Article  Google Scholar 

  • Wallin S, Zeldovich KB, Shakhnovich EI (2007) The folding mechanics of a knotted protein. J Mol Biol 368:884–893

    Article  Google Scholar 

  • Weikl TR, Dill KA (2007) Transition-states in protein folding kinetics: the structural interpretation of Phi values. J Mol Biol 365:1578–1586

    Article  Google Scholar 

  • White GW, Gianni S, Grossmann JG, Jemth P, Fersht AR, Daggett V (2005) Simulation and experiment conspire to reveal cryptic intermediates and a slide from the nucleation–condensation to framework mechanism of folding. J Mol Biol 350:757–775

    Article  Google Scholar 

  • Williams S, Causgrove TP, Gilmanshin R, Fang KS, Callender RH, Woodruff WH, Dyer RB (1996) Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 35:691–697

    Article  Google Scholar 

  • Wolynes PG (2004) Latest folding game results: protein A barely frustrates computationalists. Proc Natl Acad Sci USA 101:6837–6838

    Article  ADS  Google Scholar 

  • Wong KB, Clarke J, Bond CJ, Neira JL, Freund SM, Fersht AR, Daggett V (2000) Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding. J Mol Biol 296:1257–1282

    Article  Google Scholar 

  • Wright CF, Lindorff-Larsen K, Randles LG, Clarke J (2003) Parallel protein-unfolding pathways revealed and mapped. Nat Struct Biol 10:658–662

    Article  Google Scholar 

  • Zhou Z, Bai Y (2007) Structural biology: analysis of protein-folding cooperativity. Nature 445:E16–E17

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Y.I. is supported by a grant from the Wenner-Gren Foundations (Sweden). Work partly supported by grants from the Italian Ministero dell’Istruzione dell’Università e della Ricerca (RBIN04PWNC to M.B. and 2005027330_005 to C.T.A.) and from Sapienza Università di Roma (C26A06AFEK to M.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Gianni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivarsson, Y., Travaglini-Allocatelli, C., Brunori, M. et al. Mechanisms of protein folding. Eur Biophys J 37, 721–728 (2008). https://doi.org/10.1007/s00249-007-0256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0256-x

Keywords

Navigation