Skip to main content

Advertisement

Log in

Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Damage to and degeneration of articular cartilage is a major health issue in industrialized nations. Articular cartilage has a particularly limited capacity for auto regeneration. At present, there is no established therapy for a sufficiently reliable and durable replacement of damaged articular cartilage. In this, as well as in other areas of regenerative medicine, tissue engineering methods are considered to be a promising therapeutic component. Nevertheless, there remain obstacles to the establishment of tissue-engineered cartilage as a part of the routine therapy for cartilage defects. One necessary aspect of potential tissue engineering-based therapies for cartilage damage that requires both elucidation and progress toward practical solutions is the reliable, cost effective cultivation of suitable tissue. Bioreactors and associated methods and equipment are the tools with which it is hoped that such a supply of tissue-engineered cartilage can be provided. The fact that in vivo adaptive physical stimulation influences chondrocyte function by affecting mechanotransduction leads to the development of specifically designed bioreactor devices that transmit forces like shear, hydrostatic pressure, compression, and combinations thereof to articular and artificial cartilage in vitro. This review summarizes the basic knowledge of chondrocyte biology and cartilage dynamics together with the exploration of the various biophysical principles of cause and effect that have been integrated into bioreactor systems for the cultivation and stimulation of chondrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afoke NY, Byers PD, Hutton WC (1987) Contact pressures in the human hip joint. J Bone Joint Surg Br 69:536–541

    Google Scholar 

  • Afoke A, Hutton WC, Byers PD (1990) Pressure measurements in the human hip joint using fujifilm. In: Maroudas A, Kuettner K (eds) Methods in cartilage research. Academic Press, London, pp 281–287

  • Aigner T, Reichenberger E, Bertling W, Kirsch T, Stoss H, von der Mark K (1993) Type X collagen expression in osteoarthritic and rheumatoid articular cartilage. Virchows Arch B Cell Pathol Incl Mol Pathol 63:205–211

    Google Scholar 

  • Andereya S, Maus U, Gavenis K, Muller-Rath R, Miltner O, Mumme T, Schneider U (2006) [First clinical experiences with a novel 3D-collagen gel (CaReS) for the treatment of focal cartilage defects in the knee]. Z Orthop Ihre Grenzgeb 144:272–280

    Google Scholar 

  • Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21:451–457

    Google Scholar 

  • Angele P, Schumann D, Angele M, Kinner B, Englert C, Hente R, Fuchtmeier B, Nerlich M, Neumann C, Kujat R (2004) Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology 41:335–346

    Google Scholar 

  • Angermann P, Riegels-Nielsen P, Pedersen H (1998) Osteochondritis dissecans of the femoral condyle treated with periosteal transplantation. Poor outcome in 14 patients followed for 6–9 years. Acta Orthop Scand 69:595–597

    Google Scholar 

  • Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC (1997) Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech 30:1157–1164

    Google Scholar 

  • Axelsson S, Holmlund A, Hjerpe A (1992) Glycosaminoglycans in normal and osteoarthrotic human temporomandibular joint disks. Acta Odontol Scand 50:113–119

    Google Scholar 

  • Ayad S, Boot-Handford R, Humphries M, Kadler K, Shuttleworth A (1998) The extracellular matrix factsbook, 2nd edn. Elsevier Science and Technology, New York

    Google Scholar 

  • Aydelotte MB, Kuettner KE (1988) Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect Tissue Res 18:205–222

    Google Scholar 

  • Aydelotte MB, Schumacher BL, Kuettner KE (1992) Heterogeneity of articular chondrocytes. In: Kuettner KE, Schleyerbach R, Peyron JG (eds) Articular cartilage and osteoarthritis. Raven Press, New York, pp 237–249

  • Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316

    Google Scholar 

  • Barry FP (2003a) Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today 69:250–256

    Google Scholar 

  • Barry FP (2003b) Mesenchymal stem cell therapy in joint disease. Novartis Found Symp 249:86–96; discussion 96–102, 170–4, 239–241

    Google Scholar 

  • Bauer M, Jackson RW (1988) Chondral lesions of the femoral condyles: a system of arthroscopic classification. Arthroscopy 4:97–102

    Article  Google Scholar 

  • Bayliss MT, Ali SY (1978) Age-related changes in the composition and structure of human articular-cartilage proteoglycans. Biochem J 176:683–693

    Google Scholar 

  • Bayliss MT, Osborne D, Woodhouse S, Davidson C (1999) Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition. J Biol Chem 274:15892–15900

    Google Scholar 

  • Behrens P, Bosch U, Bruns J, Erggelet C, Esenwein SA, Gaissmaier C, Krackhardt T, Lohnert J, Marlovits S, Meenen NM, Mollenhauer J, Nehrer S, Niethard FU, Noth U, Perka C, Richter W, Schafer D, Schneider U, Steinwachs M, Weise K (2004) Indications and implementation of recommendations of the working group “Tissue Regeneration and Tissue Substitutes” for autologous chondrocyte transplantation (ACT). Z Orthop Ihre Grenzgeb 142:529–539

    Google Scholar 

  • Behrens P, Bitter T, Kurz B, Russlies M (2006) Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)–5-year follow-up. Knee 13:194–202 [Epub 2006 Apr 24]

    Google Scholar 

  • Bianco P, Fisher LW, Young MF, Termine JD, Robey PG (1990) Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J Histochem Cytochem 38:1549–1563

    Google Scholar 

  • Bieberich E (2004) Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis. Glycoconj J 21:315–327

    Google Scholar 

  • Bouchet BY, Colon M, Polotsky A, Shikani AH, Hungerford DS, Frondoza CG (2000) Beta-1 integrin expression by human nasal chondrocytes in microcarrier spinner culture. J Biomed Mater Res 52:716–724

    Google Scholar 

  • Bouwmeester SJ, Beckers JM, Kuijer R, van der Linden AJ, Bulstra SK (1997) Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop 21:313–317

    Google Scholar 

  • Boyan BD, Lohmann CH, Romero J, Schwartz Z (1999) Bone and cartilage tissue engineering. Clin Plast Surg 26:629–645, ix

    Google Scholar 

  • Brighton CT, Heppenstall RB (1971) Oxygen tension in zones of the epiphyseal plate, the metaphysis and diaphysis. An in vitro and in vivo study in rats and rabbits. J Bone Joint Surg Am 53:719–728

    Google Scholar 

  • Brittberg M, Nilsson A, Lindahl A, Ohlsson C, Peterson L (1996) Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop 326:270–283

    Google Scholar 

  • Brown AN, Kim BS, Alsberg E, Mooney DJ (2000) Combining chondrocytes and smooth muscle cells to engineer hybrid soft tissue constructs. Tissue Eng 6:297–305

    Google Scholar 

  • Browning JA, Walker RE, Hall AC, Wilkins RJ (1999) Modulation of Na+ x H+ exchange by hydrostatic pressure in isolated bovine articular chondrocytes. Acta Physiol Scand 166:39–45

    Google Scholar 

  • Buckwalter JA (1997) Cartilage. In: Dulbecco R (ed) Encyclopedia of human biology, vol 2. pp 431–445

  • Buckwalter JA (2002) Articular cartilage injuries. Clin Orthop Relat Res 404:21–37

    Google Scholar 

  • Buckwalter JA, Mankin HJ (1998a) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 17:487–504

    Google Scholar 

  • Buckwalter JA, Mankin HJ (1998b) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47:477–486

    Google Scholar 

  • Buckwalter JA, Hunziker EB, Rosenberg L, Coutts R, Adams M, Eyre D (1988) Articular cartilage: composition and structure. In: Woo SL, Buckwalter JA (eds) Injury and repair of the musculoskeletal soft tissues. American Academy of Orthopaedic Surgeons, Park Ridge, pp 405–425

    Google Scholar 

  • Buckwalter JA, Rosenberg LC, Hunziker EB (1990) Articular cartilage: composition, structure and response to injury, and methods of facilitating repair. In: Ewing JW (ed) Articular cartilage and knee joint function: basic science and arthroscopy. Raven Press, New York, pp 19–56

  • Bujia J, Rotter N, Minuth W, Burmester G, Hammer C, Sittinger M (1995) Cultivation of human cartilage tissue in a 3-dimensional perfusion culture chamber: characterization of collagen synthesis. Laryngorhinootologie 74:559–563

    Google Scholar 

  • Burger EH, Klein-Nulend J, Veldhuijzen JP (1991) Modulation of osteogenesis in fetal bone rudiments by mechanical stress in vitro. J Biomech 24:101–109

    Google Scholar 

  • Bursac PM, Freed LE, Biron RJ, Vunjak-Novakovic G (1996) Mass transfer studies of tissue engineered cartilage. Tissue Eng 2:141–150

    Google Scholar 

  • Burton-Wurster N, Vernier-Singer M, Farquhar T, Lust G (1993) Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. J Orthop Res 11:717–729

    Google Scholar 

  • Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108:1497–1508

    Google Scholar 

  • Bussolari S, Dewey C, Gimbrone M (1982) Apparatus for subjecting living cells to fluid shear stress. Rev Sci Instrum 53:1851–1854

    ADS  Google Scholar 

  • Caplan AI, Elyaderani M, Mochizuki Y, Wakitani S, Goldberg VM (1997) Principles of cartilage repair and regeneration. Clin Orthop 342:254–269

    Google Scholar 

  • Carver SE, Heath CA (1999a) Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol Bioeng 62:166–174

    Google Scholar 

  • Carver SE, Heath CA (1999b) Influence of intermittent pressure, fluid flow, and mixing on the regenerative properties of articular chondrocytes. Biotechnol Bioeng 65:274–281

    Google Scholar 

  • Carver SE, Heath CA (1999c) Semi-continuous perfusion system for delivering intermittent physiological pressure to regenerating cartilage. Tissue Eng 5:1–11

    Google Scholar 

  • Caterson EJ, Nesti LJ, Li WJ, Danielson KG, Albert TJ, Vaccaro AR, Tuan RS (2001) Three-dimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam. J Biomed Mater Res 57:394–403

    Google Scholar 

  • Chang CH, Lin FH, Lin CC, Chou CH, Liu HC (2004) Cartilage tissue engineering on the surface of a novel Gelatin–Calcium-phosphate biphasic Scaffold in a double-chamber bioreactor. J Biomed Mater Res 71B:313–321

    Google Scholar 

  • Chowdhury TT, Bader DL, Shelton JC, Lee DA (2003) Temporal regulation of chondrocyte metabolism in agarose constructs subjected to dynamic compression. Arch Biochem Biophys 417:105–111

    Google Scholar 

  • Cohen NP, Foster RJ, Mow VC (1998) Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J Orthop Sports Phys Ther 28:203–215

    Google Scholar 

  • Comper WD, Laurent TC (1978) Physiological function of connective tissue polysaccharides. Physiol Rev 58:255–315

    Google Scholar 

  • Davisson T, Kunig S, Chen AC, Sah RL, Ratcliffe A (2002a) Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res 20(4):842–848

    Google Scholar 

  • Davisson T, Sah RL, Ratcliffe A (2002b) Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng 8:807–816

    Google Scholar 

  • De Witt MT, Handley CJ, Oakes BW, Lowther DA (1984) In vitro response of chondrocytes to mechanical loading. The effect of short term mechanical tension. Connect Tissue Res 12:97–109

    Google Scholar 

  • DeHaven KE, Arnoczky SP (1994) Meniscus repair: basic science, indications for repair, and open repair. Instr Course Lect 43:65–76

    Google Scholar 

  • Demarteau O, Jakob M, Schafer D, Heberer M, Martin I (2003a) Development and validation of a bioreactor for physical stimulation of engineered cartilage. Biorheology 40:331–336

    Google Scholar 

  • Demarteau O, Wendt D, Braccini A, Jakob M, Schafer D, Heberer M, Martin I (2003b) Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun 310:580–588

    Google Scholar 

  • Domm C, Fay J, Schunke M, Kurz B (2000) Redifferentiation of dedifferentiated joint cartilage cells in alginate culture. Effect of intermittent hydrostatic pressure and low oxygen partial pressure. Orthopade 29:91–99

    Google Scholar 

  • Dunkelman NS, Zimber MP, LeBaron RG, Pavelec R, Kwan M, Purchio AF (1995) Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotech Bioeng 46:299–305

    Google Scholar 

  • Eckstein F, Reiser M, Englmeier KH, Putz R (2001) In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging–from image to data, from data to theory. Anat Embryol (Berl) 203:147–173

    Google Scholar 

  • Elder SH, Kimura JH, Soslowsky LJ, Lavagnino M, Goldstein SA (2000) Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells. J Orthop Res 18:78–86

    Google Scholar 

  • Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 29:476–482

    Google Scholar 

  • Elliott RJ, Gardner DL (1979) Changes with age in the glycosaminoglycans of human articular cartilage. Ann Rheum Dis 38:371–377

    Google Scholar 

  • Eyre DR (1995) The specificity of collagen cross-links as markers of bone and connective tissue degradation. Acta Orthop Scand Suppl 266:166–170

    Google Scholar 

  • Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4:30–5 [Epub 2001 Oct 5]

    Google Scholar 

  • Eyre DR (2004) Collagens and cartilage matrix homeostasis. Clin Orthop Relat Res S118–S122

  • Farquhar T, Xia Y, Mann K, Bertram J, Burton-Wurster N, Jelinski L, Lust G (1996) Swelling and fibronectin accumulation in articular cartilage explants after cyclical impact. J Orthop Res 14:417–423

    Google Scholar 

  • Flugge LA, Miller-Deist LA, Petillo PA (1999) Towards a molecular understanding of arthritis. Chem Biol 6:R157–R166

    Google Scholar 

  • Frank EH, Jin M, Loening AM, Levenston ME, Grodzinsky AJ (2000) A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J Biomech 33:1523–1527

    Google Scholar 

  • Freed LE (1993) Composition of cell–polymer cartilage implants. Biotech Bioeng 43:605–614

    Google Scholar 

  • Freed LE, Grande DA, Lingbin Z, Emmanual J, Marquis JC, Langer R (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res 28:891–899

    Google Scholar 

  • Freed LE, Hollander AP, Martin I, Barry JR, Langer R, Vunjak-Novakovic G (1998) Chondrogenesis in a cell–polymer-bioreactor system. Exp Cell Res 240:58–65

    Google Scholar 

  • Frondoza C, Sohrabi A, Hungerford D (1996) Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials 17:879–888

    Google Scholar 

  • Fukuda K, Asada S, Kumano F, Saitoh M, Otani K, Tanaka S (1997) Cyclic tensile stretch on bovine articular chondrocytes inhibits protein kinase C activity. J Lab Clin Med 130:209–215

    Google Scholar 

  • Gao J, Caplan AI (2003) Mesenchymal stem cells and tissue engineering for orthopaedic surgery. Chir Organi Mov 88:305–316

    Google Scholar 

  • Gibson GJ, Flint MH (1985) Type X collagen synthesis by chick sternal cartilage and its relationship to endochondral development. J Cell Biol 101:277–284

    Google Scholar 

  • Gillogly SD, Voight M, Blackburn T (1998) Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther 28:241–251

    Google Scholar 

  • Goldberg VM, Caplan AI (1999) Biologic restoration of articular surfaces. Instr Course Lect 48:623–627

    Google Scholar 

  • Goomer RS, Maris TM, Gelberman R, Boyer M, Silva M, Amiel D (2000) Nonviral in vivo gene therapy for tissue engineering of articular cartilage and tendon repair. Clin Orthop 379:S189–S200

    Google Scholar 

  • Graff RD, Lazarowski ER, Banes AJ, Lee GM (2000) ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum 43:1571–1579

    Google Scholar 

  • Grill W, Hillmann K, Kim TJ, Lenkeit O, Ndop J, Schubert M (1999) Scanning acoustic microscopy with vector contrast. Physica B 263–264:553–558

    Google Scholar 

  • Grodzinsky AJ, Urban JP (1995) Physical regulation of metabolism in cartilaginous tissues: relation to extracellular forces and flows. In: Reed RK, Laine GA, Bert JL, Winlove P, McHale N (eds) Interstitium connective tissue and lymphatics. Portland Press, London, pp 67–84

  • Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698 [Epub 2005 Feb 18]

    Google Scholar 

  • Guilak F (1995) Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech 28:1529–1541

    Google Scholar 

  • Guilak F, Meyer BC, Ratcliffe A, Mow VC (1994) The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthritis Cartilage 2:91–101

    Google Scholar 

  • Guilak F, Ratcliffe A, Mow VC (1995) Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J Orthop Res 13:410–421

    Google Scholar 

  • Hall BK (1983) Tissue interaction and chondrogenesis. In: Hall BK (ed) Cartilage, vol 2. Academic Press, New York, pp 187–222

  • Hall AC, Urban JP, Gehl KA (1991) The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res 9:1–10

    Google Scholar 

  • Hamerman D, Rosenberg LC, Schubert M (1970) Diarthrodial joints revisited. J Bone Joint Surg Am 52:725–774

    Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    Google Scholar 

  • Hangody L, Kish G, Karpati Z, Udvarhelyi I, Szigeti I, Bely M (1998) Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 21:751–756

    Google Scholar 

  • Hansen U, Schunke M, Domm C, Ioannidis N, Hassenpflug J, Gehrke T, Kurz B (2001) Combination of reduced oxygen tension and intermittent hydrostatic pressure: a useful tool in articular cartilage tissue engineering. J Biomech 34:941–949

    Google Scholar 

  • Hayes WC, Mockros LF (1971) Viscoelastic properties of human articular cartilage. J Appl Physiol 31:562–568

    Google Scholar 

  • Heath CA (2000) The effects of physical forces on cartilage tissue engineering. Biotechnol Genet Eng Rev 17:533–551

    Google Scholar 

  • Heath CA, Magari SR (1996) Mini-review: mechanical factors affecting cartilage regeneration in vitro. Biotech Bioeng 50:430–437

    Google Scholar 

  • Hedbom E, Antonsson P, Hjerpe A, Aeschlimann D, Paulsson M, Rosa-Pimentel E, Sommarin Y, Wendel M, Oldberg A, Heinegard D (1992) Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem 267:6132–6136

    Google Scholar 

  • Heinegard D, Oldberg A (1989) Structure and biology of cartilage and bone matrix noncollagenous macromolecules. Faseb J 3:2042–2051

    Google Scholar 

  • Herwig J, Egner E, Buddecke E (1984) Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis 43:635–640

    Google Scholar 

  • Hildebrand A, Romaris M, Rasmussen LM, Heinegard D, Twardzik DR, Border WA, Ruoslahti E (1994) Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 302:527–534

    Google Scholar 

  • Hodge JA, McKibbin B (1969) The nutrition of mature and immature cartilage in rabbits. An autoradiographic study. J Bone Joint Surg Br 51:140–147

    Google Scholar 

  • Hodge WA, Fijan RS, Carlson KL, Burgess RG, Harris WH, Mann RW (1986) Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci U S A 83:2879–2883

    ADS  Google Scholar 

  • Hoikka VE, Jaroma HJ, Ritsila VA (1990) Reconstruction of the patellar articulation with periosteal grafts: 4-year follow-up of 13 cases. Acta Orthop Scand 61:36–39

    Article  Google Scholar 

  • Honner R, Thompson RC (1971) The nutritional pathways of articular cartilage. An autoradiographic study in rabbits using 35S injected intravenously. J Bone Joint Surg Am 53:742–748

    Google Scholar 

  • Hung CT, Mauck RL, Wang CC, Lima EG, Ateshian GA (2004) A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann Biomed Eng 32:35–49

    Google Scholar 

  • Huang CY, Hagar KL, Frost LE, Sun Y, Cheung HS (2004a) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323

    Google Scholar 

  • Huang CY, Hagar KL, Frost LE, Sun Y, Cheung HS (2004b) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323

    Google Scholar 

  • Hunter CJ, Imler SM, Malaviya P, Nerem RM, Levenston ME (2002) Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials 23:1249–1259

    Google Scholar 

  • Hunter CJ, Mouw JK, Levenston ME (2004) Dynamic compression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness. Osteoarthritis Cartilage 12:117–130

    Google Scholar 

  • Hunziker EB (1999) Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis Cartilage 7:15–28

    Google Scholar 

  • Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463

    Google Scholar 

  • Hunziker EB, Kapfinger E (1998) Removal of proteoglycans from the surface of defects in articular cartilage transiently enhances coverage by repair cells. J Bone Joint Surg Br 80:144–150

    Google Scholar 

  • Huster D, Schiller J, Arnold K (2002) Comparison of collagen dynamics in articular cartilage and isolated fibrils by solid-state NMR spectroscopy. Magn Reson Med 48:624–632

    Google Scholar 

  • Huster D, Schiller J, Naji L, Kaufmann J, Arnold K (2004) NMR studies of cartilage—dynamics, diffusion, and degradation. In: Haberland R, Pöppl A, Stannarius R, Michel D (eds) Molecules in interaction with surfaces, vol 455–492. Springer, Heidelberg

  • Huster D, Naji L, Schiller J, Arnold K (2005) Dynamics of the biopolymers in articular cartilage studied by magic angle spinning NMR. Appl Magn Reson 27:471–487

    Article  Google Scholar 

  • Ikenoue T, Michael CD, Trindade MC, Lee MS, Lin EY, Schurman DJ, Goodman SB, Smith RL (2003) Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure. J Orthop Res 21:110–116

    Google Scholar 

  • Ingber DE (2003a) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    Google Scholar 

  • Ingber DE (2003b) Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408

    Google Scholar 

  • Iwata H (1993) Pharmacologic and clinical aspects of intraarticular injection of hyaluronate. Clin Orthop 289:285–291

    Google Scholar 

  • Jin M, Frank EH, Quinn TM, Hunziker EB, Grodzinsky AJ (2001) Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch Biochem Biophys 395:41–48

    Google Scholar 

  • Jin M, Emkey GR, Siparsky P, Trippel SB, Grodzinsky AJ (2003) Combined effects of dynamic tissue shear deformation and insulin-like growth factor I on chondrocyte biosynthesis in cartilage explants. Arch Biochem Biophys 414:223–231

    Google Scholar 

  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    Google Scholar 

  • Kim HW, Han CD (2000) An overview of cartilage tissue engineering. Yonsei Med J 41:766–773

    Google Scholar 

  • Kim HK, Moran ME, Salter RB (1991) The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg Am 73:1301–1315

    Google Scholar 

  • Kisiday JD, Jin M, DiMicco MA, Kurz B, Grodzinsky AJ (2004) Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J Biomech 37:595–604

    Google Scholar 

  • Klein-Nulend J, Veldhuijzen JP, Burger EH (1986) Increased calcification of growth plate cartilage as a result of compressive force in vitro. Arthritis Rheum 29:1002–1009

    Google Scholar 

  • Knudson CB, Knudson W (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12:69–78

    Google Scholar 

  • Kreklau B, Sittinger M, Mensing MB, Voigt C, Berger G, Burmester GR, Rahmanzadeh R, Gross U (1999) Tissue engineering of biphasic joint cartilage transplants. Biomaterials 20:1743–1749

    Google Scholar 

  • Laforsch C, Ngwa W, Grill W, Tollrian R (2004) An acoustic microscopy technique reveals hidden morphological defenses in Daphnia. Proc Natl Acad Sci U S A 101:15911–15914 [Epub 2004 Nov 1]

    Google Scholar 

  • Lai WM, Mow VC, Zhu W (1993) Constitutive modeling of articular cartilage and biomacromolecular solutions. J Biomech Eng 115:474–480

    Google Scholar 

  • Lammi MJ, Inkinen R, Parkkinen JJ, Hakkinen T, Jortikka M, Nelimarkka LO, Jarvelainen HT, Tammi MI (1994) Expression of reduced amounts of structurally alitered aggrecan in articular cartilage chondrocytes exposed to high hydrostatic pressure. Biochem J 304:723–730

    Google Scholar 

  • Lash JW, Saxen L, Kosher RA (1974) Human chondrogenesis: glycosaminoglycan content of embryonic human cartilage. J Exp Zool 189:127–131

    Google Scholar 

  • Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, Heyse SP, Hirsch R, Hochberg MC, Hunder GG, Liang MH, Pillemer SR, Steen VD, Wolfe F (1998) Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 41:778–799

    Google Scholar 

  • Leavitt M, Gerberding J, Sondik E (2005) Health, United States, 2005. National Center for Health Statistics, MD, pp 550

    Google Scholar 

  • Lee DA, Bader DL (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res 15:181–188

    Google Scholar 

  • Lee RC, Rich JB, Kelley KM, Weiman DS, Mathews MB (1982) A comparison of in vitro cellular responses to mechanical and electrical stimulation. Am Surg 48:567–574

    Google Scholar 

  • Lee CR, Grodzinsky AJ, Hsu HP, Spector M (2003) Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model. J Orthop Res 21:272–281

    Google Scholar 

  • Lee JW, Kim YH, Kim SH, Han SH, Hahn SB (2004) Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med J 45:41–47

    Google Scholar 

  • Leeson CR, Leeson TS, Paparo AA (1985) Specialized connective tissue: cartilage and bone Textbook of histology, vol 5. W B Saunders Co, Philadelphia, pp 125–149

  • Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599–609

    Google Scholar 

  • Lincoln B, Erickson HM, Schinkinger S, Wottawah F, Mitchell D, Ulvick S, Bilby C, Guck J (2004) Deformability-based flow cytometry. Cytometry A 59:203–209

    Google Scholar 

  • Lindahl U, Hook M (1978) Glycosaminoglycans and their binding to biological macromolecules. Annu Rev Biochem 47:385–417

    Google Scholar 

  • Lyyra T, Kiviranta I, Vaatainen U, Helminen HJ, Jurvelin JS (1999) In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J Biomed Mater Res 48:482–487

    Google Scholar 

  • Maeda S, Yoshida M, Hirano H, Horiuchi S (2001) Effects of mechanical stimulation on gene expression of articular chondrocytes in polylayer culture. Tohoku J Exp Med 193:301–310

    Google Scholar 

  • Majumdar MK, Wang E, Morris EA (2001) BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol 189:275–284

    Google Scholar 

  • Mandelbaum BR, Browne JE, Fu F, Micheli L, Mosely JB Jr, Erggelet C, Minas T, Peterson L (1998) Articular cartilage lesions of the knee. Am J Sports Med 26:853–861

    Google Scholar 

  • Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64:460–466

    Google Scholar 

  • Mankin HJ, Thrasher AZ (1975) Water content and binding in normal and osteoarthritic human cartilage. J Bone Joint Surg Am 57:76–80

    Google Scholar 

  • Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, Kon E, Pederzini L, Rosa D, Sacchetti GL, Stefani G, Zanasi S (2005) Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res 435:96–105

    Google Scholar 

  • Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V (2006) Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 57:24–31 [Epub 2005 Sep 26]

    Google Scholar 

  • Maroudas A, Venn M (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling Ann Rheum Dis 36:399–406

    Google Scholar 

  • Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22:80–86

    Google Scholar 

  • Mason JM, Breitbart AS, Barcia M, Porti D, Pergolizzi RG, Grande DA (2000) Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop 379:S171–S178

    Google Scholar 

  • Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122:252–260

    Google Scholar 

  • Mauck RL, Seyhan SL, Ateshian GA, Hung CT (2002) Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 30:1046–1056

    Google Scholar 

  • Mauck RL, Yuan X, Tuan RS (2006) Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 14:179–189 [Epub 2005 Oct 27]

    Google Scholar 

  • Mayhew TA, Williams GR, Senica MA, Kuniholm G, Du Moulin GC (1998) Validation of a quality assurance program for autologous cultured chondrocyte implantation. Tissue Eng 4:325–334

    Google Scholar 

  • McDevitt CA, Webber RJ (1990) The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop 252:8–18

    Google Scholar 

  • McKibbin B (1973) Nutrition. In: Freeman MA (ed) Adult articular cartilage. Pitman Medical, London, pp 277–285

  • McNicol D, Roughley PJ (1980) Extraction and characterization of proteoglycan from human meniscus. Biochem J 185:705–713

    Google Scholar 

  • Meachim G, Stockwell RA (1973) The Matrix. In: Freeman MA (ed) Adult articular cartilage. Pitman Medical, London, pp 1–5

  • Menche DS, Vangsness CT Jr, Pitman M, Gross AE, Peterson L (1998) The treatment of isolated articular cartilage lesions in the young individual. Instr Course Lect 47:505–515

    Google Scholar 

  • Millward-Sadler SJ, Wright MO, Davies LW, Nuki G, Salter DM (2000) Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes. Arthritis Rheum 43:2091–2099

    Google Scholar 

  • Minas T (1999) The role of cartilage repair techniques, including chondrocyte transplantation, in focal chondral knee damage. Instr Course Lect 48:629–643

    Google Scholar 

  • Minas T, Peterson L (1999) Advanced techniques in autologous chondrocyte transplantation. Clin Sports Med 18:13–44, v–vi

    Google Scholar 

  • Mitchell N, Shepard N (1980) Healing of articular cartilage in intra-articular fractures in rabbits. J Bone Joint Surg Am 62:628–634

    Google Scholar 

  • Mizuno S, Allemann F, Glowacki J (2001) Effects of medium perfusion on matrix production by bovine chondrocytes in three-dimensional collagen sponges. J Biomed Mater Res 56:368–375

    Google Scholar 

  • Mizuno S, Tateishi T, Ushida T, Glowacki J (2002) Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. J Cell Physiol 193:319–327

    Google Scholar 

  • Mohtai M, Gupta MK, Donlon B, Ellison B, Cooke TJ, Gibbons TG, Schurman DJ, Smith RL (1996) Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytes in vitro. J Orthop Res 14:67–73

    Google Scholar 

  • Montes GS (1996) Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int 20:15–27

    Google Scholar 

  • Möricke KD (1997) Binde- und Stützgewebe. Biologie Menschen 14:106–125

    Google Scholar 

  • Mow VC, Wang CC (1999) Some bioengineering considerations for tissue engineering of articular cartilage. Clin Orthop 367:S204–S223

    Google Scholar 

  • Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97

    Google Scholar 

  • Muir IH (1973) Biochemistry. In: Freeman MA (ed) Adult articular cartilage. Pitman medical, London, pp 100–130

  • Naji L, Kaufmann J, Huster D, Schiller J, Arnold K (2000) 13C NMR relaxation studies on cartilage and cartilage components. Carbohydr Res 327:439–446

    Google Scholar 

  • Nerlich M, Schumann D, Kujat R, Angele P (2004) Mechanobiological conditioning on mesenchymal stem cells during chondrogenesis. Shock 136

  • Ngwa W, Knauth S, Laforsch C, Grill W (2004) Precision measurement of acoustic reflectivity for a scanning acoustic microscope that measures amplitude and phase: applicability in biology. Proc IEEE 5394:233

    Google Scholar 

  • Obradovic B, Carrier RL, Vunjak-Novakovic G, Freed LE (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol Bioeng 63:197–205

    Google Scholar 

  • Ochi M, Uchio Y, Tobita M, Kuriwaka M (2001) Current concepts in tissue engineering technique for repair of cartilage defect. Artif Organs 25:172–179

    Google Scholar 

  • O’Driscoll SW (1998) The healing and regeneration of articular cartilage. J Bone Joint Surg Am 80:1795–1812

    Google Scholar 

  • O’Driscoll SW (1999) Articular cartilage regeneration using periosteum. Clin Orthop Relat Res 367:S186–S203

    Google Scholar 

  • Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43B:752–757

    Google Scholar 

  • Palfrey AJ, Davies DV (1966) The fine structure of chondrocytes. J Anat 100:213–226

    Google Scholar 

  • Palmoski MJ, Brandt KD (1984) Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum 27:675–681

    Google Scholar 

  • Parkkinen JJ, Ikonen J, Lammi MJ, Laakkonen J, Tammi M, Helminen HJ (1993) Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 300:458–465

    Google Scholar 

  • Parvizi J, Wu CC, Lewallen DG, Greenleaf JF, Bolander ME (1999) Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res 17:488–494

    Google Scholar 

  • Pazzano D, Mercier KA, Moran JM, Fong SS, DiBiasio DD, Rulfs JX, Kohles SS, Bonassar LJ (2000) Comparison of chondrogensis in static and perfused bioreactor culture. Biotechnol Prog 16:893–896

    Google Scholar 

  • Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 374:212–234

    Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    ADS  Google Scholar 

  • Pridie KH (1959) A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg [Br] 41:618–619

    Google Scholar 

  • Rajpurohit R, Koch CJ, Tao Z, Teixeira CM, Shapiro IM (1996) Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism. J Cell Physiol 168:424–432

    Google Scholar 

  • Ratcliffe A, Mow VC (1996) Articular cartilage. Harwood Academic Publishers GmbH, Amsterdam

    Google Scholar 

  • Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28:385–397

    Google Scholar 

  • Roughley PJ, White RJ, Glant TT (1987) The structure and abundance of cartilage proteoglycans during early development of the human fetus. Pediatr Res 22:409–413

    Google Scholar 

  • Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD (1989) Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7:619–636

    Google Scholar 

  • Sah RL, Grodzinsky AJ, Plaas AH, Sandy JD (1990) Effects of tissue compression on the hyaluronate-binding properties of newly synthesized proteoglycans in cartilage explants. Biochem J 267:803–808

    Google Scholar 

  • Sah RL, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD (1991) Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage explants. Arch Biochem Biophys 286:20–29

    Google Scholar 

  • Sah RL, Grodzinsky AJ, Plaas AH, Sandy JD (1992) Effects of static and dynamic compression on matrix metabolism in cartilage explains. In: Kuettner KE, Schleyerbach R, Peyron JC, Hascall VC (eds) Articular cartilage osteoarthritis. Raven Press, New york, pp 373–392

  • Sauerland K, Raiss RX, Steinmeyer J (2003) Proteoglycan metabolism and viability of articular cartilage explants as modulated by the frequency of intermittent loading. Osteoarthritis Cartilage 11:343–350

    Google Scholar 

  • Saxne T, Heinegard D (1992) Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood. Br J Rheumatol 31:583–591

    Google Scholar 

  • Schiller J, Zschornig O, Petkovic M, Muller M, Arnhold J, Arnold K (2001) Lipid analysis of human HDL and LDL by MALDI-TOF mass spectrometry and (31)P-NMR. J Lipid Res 42:1501–1508

    Google Scholar 

  • Schiller J, Huster D, Fuchs B, Naji L, Kaufmann J, Arnold K (2004a) Evaluation of cartilage composition and degradation by high-resolution magic-angle spinning nuclear magnetic resonance. Methods Mol Med 101:267–285

    Google Scholar 

  • Schiller J, Suss R, Arnhold J, Fuchs B, Lessig J, Muller M, Petkovic M, Spalteholz H, Zschornig O, Arnold K (2004b) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43:449–488

    Google Scholar 

  • Schinagl RM, Ting MK, Price JH, Sah RL (1996) Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression. Ann Biomed Eng 24:500–512

    Google Scholar 

  • Schmid TM, Popp RG, Linsenmayer TF (1990) Hypertrophic cartilage matrix. Type X collagen, supramolecular assembly, and calcification. Ann N Y Acad Sci 580:64–73

    ADS  Google Scholar 

  • Schmidt G, Hausser H, Kresse H (1991) Interaction of the small proteoglycan decorin with fibronectin. Involvement of the sequence NKISK of the core protein. Biochem J 280:411–414

    Google Scholar 

  • Schulz RM, Bader A (2006) Method and Bioreactor for the cultivation and stimulation of three-dimensional, vitally and mechanically resistant cell transplants. University of Leipzig, Germany, pp 60

  • Schulz R, Hohle S, Zernia G, Zscharnack M, Schiller J, Bader A, Arnold K, Huster D (2006) Analysis of extracellular matrix production in artificial cartilage constructs by histology, immunocytochemistry, mass spectrometry, and NMR spectroscopy. J Nanosci Nanotechnol 6:2368–2381

    Google Scholar 

  • Schumann D (2004) Methoden zur Optimierung von Tissue Engineering Produkten auf dem Wege zur Reparatur osteochondraler Defekte Chemie und Pharmazie. Universität Regensburg, Regensburg, pp 220

    Google Scholar 

  • Schünke M (2000) Gelenke. In: Funktionelle Anatomie. Topographie und Funktion des Bewegungssystems. Thieme, Stuttgart, pp 43–68

  • Schwartz NB, Pirok EW 3rd, Mensch JR Jr, Domowicz MS (1999) Domain organization, genomic structure, evolution, and regulation of expression of the aggrecan gene family. Prog Nucleic Acid Res Mol Biol 62:177–225

    Article  Google Scholar 

  • Scott JE (1992) Oxygen and the connective tissues. Trends Biochem Sci 17:340–343

    Google Scholar 

  • Scott JE (1999) Supramolecular organization and the “shape module” concept in animal matrix biology. Biochem. Mol Biol Biophys 2:155–167

    Google Scholar 

  • Scott JE, Haigh M (1988) Keratan sulphate and the ultrastructure of cornea and cartilage: a ‘stand-in’ for chondroitin sulphate in conditions of oxygen lack? J Anat 158:95–108

    Google Scholar 

  • Setton LA, Guilak F, Hsu EW, Vail TP (1999) Biomechanical factors in tissue engineered meniscal repair. Clin Orthop 367:S254–S272

    Google Scholar 

  • Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75:532–553

    Google Scholar 

  • Shelton J, Netti PA, Oomens CWJ, Kunert V, Bader A (2004) Development of an intelligent bioreactor (IMBIOTOR). In: 14th Conference of the European Society of Biomechanics, Den Bosch

  • Shen Z, Heinegard D, Sommarin Y (1995) Distribution and expression of cartilage oligomeric matrix protein and bone sialoprotein show marked changes during rat femoral head development. Matrix Biol 14:773–781

    Google Scholar 

  • Silver IA (1975) Measurement of pH and ionic composition of pericellular sites. Philos Trans R Soc Lond B Biol Sci 271:261–272

    ADS  Google Scholar 

  • Simon WH, Mak A, Spirt A (1990) The effect of shear fatigue on bovine articular cartilage. J Orthop Res 8:86–93

    Google Scholar 

  • Sittinger M, Bujia J, Minuth WW, Hammer C, Burmester GR (1994) Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture. Biomaterials 15:451–466

    Google Scholar 

  • Smith GN Jr, Brandt KD (1992) Hypothesis: can type IX collagen “glue” together intersecting type II fibers in articular cartilage matrix? A proposed mechanism. J Rheumatol 19:14–17

    Google Scholar 

  • Smith RL, Donlon BS, Gupta MK, Mohtai M, Das P, Carter DR, Cooke J, Gibbons G, Hutchinson N, Schurman DJ (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 13:824–831

    Google Scholar 

  • Smith RL, Rusk SF, Ellison BE, Wessells P, Tsuchiya K, Carter DR, Caler WE, Sandell LJ, D. J. Schurman DJ (1996) In Vitro Stimulation of Articular Chondrocyte mRNA and Extracellular Matrix Synthesis by Hydrostatic Pressure. J Orthop Res 14:53–60

    Google Scholar 

  • Smith RL, Lin J, Trindade MC, Shida J, Kajiyama G, Vu T, Hoffman AR, van der Meulen MC, Goodman SB, Schurman DJ, Carter DR (2000a) Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression. J Rehabil Res Dev 37:153–161

    Google Scholar 

  • Smith RL, Trindade MC, Ikenoue T, Mohtai M, Das P, Carter DR, Goodman SB, Schurman DJ (2000b) Effects of shear stress on articular chondrocyte metabolism. Biorheology 37:95–107

    Google Scholar 

  • Soltz MA, Ateshian GA (1998) Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J Biomech 31:927–934

    Google Scholar 

  • Song L, Baksh D, Tuan RS (2004) Mesenchymal stem cell-based cartilage tissue engineering: cells, scaffold and biology. Cytotherapy 6:596–601

    Google Scholar 

  • Spirt AA, Mak AF, Wassell RP (1989) Nonlinear viscoelastic properties of articular cartilage in shear. J Orthop Res 7:43–49

    Google Scholar 

  • Stading M, Langer R (1999) Mechanical shear properties of cell–polymer cartilage constructs. Tissue Eng 5:241–250

    Google Scholar 

  • Steadman JR, Rodrigo JJ, Briggs KK, Sink E, Silliman J (1997) Long-term results of full-thickness articular cartilage defects of the knee treated with debridement and microfracture. Read at the Linvatec Sports Medicine Conference, Vail, Colorado

  • Steinmeyer J (1997) A computer-controlled mechanical culture system for biological testing of articular cartilage. J Biomech 30:841–845

    Google Scholar 

  • Steinmeyer J, Knue S (1997) The proteoglycan metabolism of mature bovine articular cartilage explants superimposed to continuously applied cyclic mechanical loading. Biochem Biophys Res Commun 240:216–221

    Google Scholar 

  • Steinmeyer J, Torzilli PA, Burton-Wurster N, Lust G (1993) A new pressure chamber to study the biosynthetic response of articular cartilage to mechanical loading. Res Exp Med (Berl) 193:137–142

    Google Scholar 

  • Steinmeyer J, Knue S, Raiss RX, Pelzer I (1999) Effects of intermittently applied cyclic loading on proteoglycan metabolism and swelling behaviour of articular cartilage explants. Osteoarthritis Cartilage 7:155–164

    Google Scholar 

  • Stockwell RA (1967) The cell density of human articular and costal cartilage. J Anat 101:753–763

    Google Scholar 

  • Stockwell RA (1979) Chondrogenesis and chondrocyte differentiation. Biology of cartilage cells. Cambridge University Press, Cambridge, pp 179–212

    Google Scholar 

  • Swann AC, Seedhom BB (1993) The stiffness of normal articular cartilage and the predominant acting stress levels: implications for the aetiology of osteoarthrosis. Br J Rheumatol 32:16–25

    Google Scholar 

  • Takahashi I, Nuckolls GH, Takahashi K, Tanaka O, Semba I, Dashner R, Shum L, Slavkin HC (1998) Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J Cell Sci 111:2067–2076

    Google Scholar 

  • Ting V, Sims CD, Brecht LE, McCarthy JG, Kasabian AK, Connelly PR, Elisseeff J, Gittes GK, Longaker MT (1998) In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes. Ann Plast Surg 40:413–420; discussion 420–421

    Google Scholar 

  • Valhmu WB, Raia FJ (2002) myo-Inositol 1,4,5-trisphosphate and Ca(2+)/calmodulin-dependent factors mediate transduction of compression-induced signals in bovine articular chondrocytes. Biochem J 361:689–696

    Google Scholar 

  • Valhmu WB, Stazzone EJ, Bachrach NM, Saed-Nejad F, Fischer SG, Mow VC, Ratcliffe A (1998) Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression. Arch Biochem Biophys 353:29–36

    Google Scholar 

  • van Kampen GP, Veldhuijzen JP, Kuijer R, van de Stadt RJ, Schipper CA (1985) Cartilage response to mechanical force in high-density chondrocyte cultures. Arthritis Rheum 28:419–424

    Google Scholar 

  • van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB (1994) Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest 71:279–290

    Google Scholar 

  • Veldhuijzen JP, Huisman AH, Vermeiden JP, Prahl-Andersen B (1987) The growth of cartilage cells in vitro and the effect of intermittent compressive force. A histological evaluation. Connect Tissue Res 16:187–196

    Google Scholar 

  • Venn M, Maroudas A (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 36:121–129

    Google Scholar 

  • von Schroeder HP, Kwan M, Amiel D, Coutts RD (1991) The use of polylactic acid matrix and periosteal grafts for the reconstruction of rabbit knee articular defects. J Biomed Mater Res 25:329–339

    Google Scholar 

  • von Eisenhart R, Adam C, Steinlechner M, Muller-Gerbl M, Eckstein F (1999) Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint. J Orthop Res 17:532–539

    Google Scholar 

  • Vunjak-Novakovic G, Freed LE, Biron RJ, Langer R (1996) Effects of mixing on the composition and morphology of tissue-engineered cartilage. AIChE J 42:850–860

    Google Scholar 

  • Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 17:130–138

    Google Scholar 

  • Wagner O, Zinke J, Dancker P, Grill W, Bereiter-Hahn J (1999) Viscoelastic properties of f-actin, microtubules, f-actin/alpha-actinin, and f-actin/hexokinase determined in microliter volumes with a novel nondestructive method. Biophys J 76:2784–2796

    Article  Google Scholar 

  • Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Hong J, Kandel RA (2003a) Effect of biomechanical conditioning on cartilaginous tissue formation in vitro. J Bone Joint Surg Am 85-A(suppl 2):101–105

    Google Scholar 

  • Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA (2003b) Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J Orthop Res 21:590–596

    Google Scholar 

  • Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA (2004) Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Tissue Eng 10:1323–1331

    Google Scholar 

  • Watanabe H, Yamada Y, Kimata K (1998) Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem (Tokyo) 124:687–693

    Google Scholar 

  • Weightmann B, Kempson G (1973) Load carriage. In: Freeman MA (ed) Adult articular cartilage. Pitman Medical, London, pp 291–332

  • Weiss C (1978) Light and electron microscopic studies of normal articular cartilage. In: Simon WH (ed) The human joint in health and disease. University of Philadelphia Press, Philadelphia, pp 9–20

  • Wendt D, Marsano A, Jakob M, Heberer M, Martin I (2003) Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol Bioeng 84:205–214

    Google Scholar 

  • Wheater PR, Burkitt HG, Daniels VG (1979) The skeletal tissues. In: Functional histology, a text and colour atlas, 2nd edn. Churchill Livingstone, New York, pp 128–144

  • Wong M, Wuethrich P, Buschmann MD, Eggli P, Hunziker E (1997) Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res 15:189–196

    Google Scholar 

  • Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ (2001) Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res 19:738–749

    Google Scholar 

  • Wright M, Jobanputra P, Bavington C, Salter DM, Nuki G (1996) Effects of intermittent pressure-induced strain on the electrophysiology of cultured human chondrocytes: evidence for the presence of stretch-activated membrane ion channels. Clin Sci (Lond) 90:61–71

    Google Scholar 

  • Wright MO, Nishida K, Bavington C, Godolphin JL, Dunne E, Walmsley S, Jobanputra P, Nuki G, Salter DM (1997) Hyperpolarisation of cultured human chondrocytes following cyclical pressure-induced strain: evidence of a role for alpha 5 beta 1 integrin as a chondrocyte mechanoreceptor. J Orthop Res 15:742–747

    Google Scholar 

  • Wu JJ, Eyre DR (1989) Covalent interactions of type IX collagen in cartilage. Connect Tissue Res 20:241–246

    Google Scholar 

  • Wu F, Dunkelman N, Peterson A, Davisson T, De La Torre R, Jain D (1999) Bioreactor development for tissue-engineered cartilage. Ann N Y Acad Sci 875:405–411

    ADS  Google Scholar 

  • Young RD, Lawrence PA, Duance VC, Aigner T, Monaghan P (2000) Immunolocalization of collagen types II and III in single fibrils of human articular cartilage. J Histochem Cytochem 48:423–432

    Google Scholar 

  • Ysart GE, Mason RM (1994) Responses of articular cartilage explant cultures to different oxygen tensions. Biochim Biophys Acta 1221:15–20

    Google Scholar 

  • Zernia G, Huster D (2006) Collagen dynamics in articular cartilage under osmotic pressure. NMR Biomed 19:1010–1019

    Google Scholar 

  • Zhu W, Mow VC, Koob TJ, Eyre DR (1993) Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J Orthop Res 11:771–781

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. D. Huster (Martin Luther University Halle-Wittenberg, Junior Research Group “Structural Biology of Membrane Proteins), Dr. J. Schiller (University of Leipzig, Institute of Medical Physics and Biophysics), and Dr. P. Hepp (University of Leipzig, Department of Trauma and Reconstructive Surgery) for the illustrations, sketches and micrographs. This work was supported by the “IMBIOTOR”-project of the 5th FP, by the BMBF project “QuantPro”, by the European Funds for Regional Development (# 4212/03-12), and by the formel.1 programme of the Medical Faculty of Leipzig (#55/2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronny Maik Schulz.

Additional information

Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, R.M., Bader, A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36, 539–568 (2007). https://doi.org/10.1007/s00249-007-0139-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0139-1

Keywords

Navigation