Skip to main content
Log in

Alamethicin influence on the membrane bending elasticity

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We investigate the bending elasticity of lipid membranes with the increase of the alamethicin concentrations in the membrane via analysis of the thermally induced shape fluctuations of quasi-spherical giant vesicles. Our experimental results prove the strong influence of alamethicin molecules on the bending elasticity of diphytanoyl phosphatidylcholine and dilauroyl phosphatidylcholine membranes even in the range of very low peptide concentrations (less than 10−3 mol/mol in the membrane). The results presented in this work, testify to the peripheral orientation of alamethicin molecules at low peptide concentrations in the membrane for both types of lipid bilayers. An upper limit of the concentration of the peptide in the membrane is determined below which the system behaves as an ideal two-dimensional solution and the peptide molecules have a planar orientation in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Angelova M, Dimitrov DS (1988) A mechanism of liposome formation. Progr Colloid Polym Sci 76:59–67

    Google Scholar 

  • Archer SJ, Ellena JF, Cafiso DS (1991) Dynamics and aggregation of the peptide ion channel alamethicin. Biophys J 60:389–398

    PubMed  Google Scholar 

  • Bivas I, Méléard P (2003) Bending elasticity of a lipid bilayer containing an additive. Phys Rev E 67:012901

    Article  ADS  Google Scholar 

  • Bo L, Waugh RE (1989) Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys J 55:509–517

    PubMed  Google Scholar 

  • Cascio M, Wallace BA (1988) Conformation of alamethicin in phospholipid vesicles: implications for insertion models. Proteins Struct Funct Genet 4:89–98

    Article  PubMed  Google Scholar 

  • Engelhardt H, Duwe H-P, Sackmann E (1985) Bilayer bending elasticity measured by Fourier analysis of thermally excited surface undulations of flaccid vesicles. J Physique Lett 46:L395–L400

    Article  Google Scholar 

  • Evans E, Needham D (1986) Giant vesicle bilayers composed of mixtures of lipids, cholesterol and polypeptides. Faraday Discuss Chem Soc USA 81:267–280

    Article  Google Scholar 

  • Evans E, Rawicz W (1990) Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett 64:2094–2097

    Article  PubMed  ADS  Google Scholar 

  • Faucon JF, Mitov MD, Méléard P, Bivas I, Bothorel P (1989) Bending elasticity and thermal fluctuations of lipid membranes. Theoretical and experimental requirements. J Physique 50:2389–2414

    Article  Google Scholar 

  • Fox RO Jr, Richards FM (1982) A voltage-gated ion channel inferred from the crystal structure of alamethicin at 1.5 A resolution. Nature 300:325–330

    Article  PubMed  ADS  Google Scholar 

  • Gerbeaud C (1998) Effet de l’insertion de protéines et de peptides membranaires sur les propriétés mécaniques et les changements morphologiques de vésicules géantes. PhD Thesis, University of Bordeaux I

  • Hackl W, Seifert U, Sackmann E (1997) Effects of fully and partially solubilized amphiphiles on bilayer bending stiffness and temperature dependence of the effective tension of giant vesicles. J Phys France II 7:1141–1157

    Article  Google Scholar 

  • He K, Ludtke SJ, Heller WT, Huang HW (1996) Mechanism of Alamethicin Insertion into Lipid Bilayers. Biophys J 71:2669–2679

    Article  PubMed  Google Scholar 

  • Huang HW, Wu Y (1991) Lipid-alamethicin interactions influence alamethicin orientation. Biophys J 60:1079–1087

    Google Scholar 

  • Kralj-Iglic V, Svetina S, Zeks B (1996) Shapes of bilayer vesicles with membrane embedded molecules. Eur Biophys J 24:311–321

    Article  PubMed  Google Scholar 

  • Ladokhin AS, Jayasinghe S., White SH (2000) How to measure and analyse tryptophan fluorescence in membrane properly and why bother. Anal Biochem 285:235–245

    Article  PubMed  Google Scholar 

  • Leibler S (1986) Curvature instability in membrane. J Physique 47:507–516

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  • Mitov MD, Faucon JF, Méléard P, Bothorel P (1992) Thermal fluctuations of membranes. In: Gokel GW (ed) Advances in supramolecular chemistry, vol 2. JAI Press Inc, pp 93–139

  • Olah GA, Huang HW (1988) Circular dichroism of oriented alpha-helices. I. Proof of the exciton theory. J Chem Phys 89:2531–2538

    Article  ADS  Google Scholar 

  • Pécréaux J, Döbereiner H-G, Prost J, Joanny J-F, Bassereau P (2004) Refined contour analysis of giant unilamellar vesicles. Eur Phys J E 13:277–290

    Article  PubMed  Google Scholar 

  • Rizzo V, Stankowski S, Schwartz G (1987) Alamethicin incorporation in lipid bilayers: a thermodynamic study. Biochemistry 26:2751–2759

    Article  PubMed  Google Scholar 

  • Sansom MS (1993) Alamethicin and related peptaibols—model ion channels. Eur Biophys J 22:105–124

    Article  PubMed  Google Scholar 

  • Schwartz G, Stankowski S, Rizzo V (1986) Thermodynamic analysis of incorporation and aggregation in a membrane: application to the pore-forming peptide alamethicin. Biochim Biophys Acta 861:141–151

    PubMed  Google Scholar 

  • Seifert U (1993) Curvature-induced lateral phase segregation in two-component vesicles. Phys Rev Lett 70:1335–1338

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  • Tamm LK (1994) Physical studies of peptide-bilayer interactions. In: White SH (ed) Membrane protein structure: experimental approaches. Oxford University Press, New York

  • Vitkova V, Genova J, Mitov MD, Bivas I (2004) Mechanical properties of lipid mono- and bilayers in the presence of small carbohydrates in the aqueous phase. C R Acad Bulg Sci 57(6):55–60

    Google Scholar 

  • Vogel H (1987) Comparison of the conformation and orientation of alamethicin and melittin in lipid membranes. Biochemistry 26:4562–4572

    Article  PubMed  Google Scholar 

  • Woolley GA, Wallace BA (1992) Model ion channels: gramicidin and alamethicin. J Membrane Biol 129:109–136

    Article  Google Scholar 

  • Woolley GA, Wallace BA (1993) Temperature dependence of the interaction of alamethicin helices in membranes. Biochemstry 32:9819–9825

    Article  Google Scholar 

  • Wu Y, He K, Ludtke SJ, Huang HW (1995) X-Ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J 68:2361–2369

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs. Jean-Claude Talbot, Thierry Biben, and Marin D. Mitov for the fruitful discussions and collaboration. The contribution of the Bulgarian National Science Foundation (contract MUF-1203/02) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isak Bivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitkova, V., Méléard, P., Pott, T. et al. Alamethicin influence on the membrane bending elasticity. Eur Biophys J 35, 281–286 (2006). https://doi.org/10.1007/s00249-005-0019-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-005-0019-5

Keywords

Navigation