Skip to main content
Log in

Multiscale modeling of lipids and lipid bilayers

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A multiscale modeling approach is applied for simulations of lipids and lipid assemblies on mesoscale. First, molecular dynamics simulation of initially disordered system of lipid molecules in water within all-atomic model was carried out. On the next stage, structural data obtained from the molecular dynamics (MD) simulation were used to build a coarse-grained (ten sites) lipid model, with effective interaction potentials computed by the inverse Monte Carlo method. Finally, several simulations of the coarse-grained model on longer length- and time-scale were performed, both within Monte Carlo and molecular dynamics simulations: a periodical sample of lipid molecules ordered in bilayer, a free sheet of such bilayer without periodic boundary conditions, formation of vesicle from a plain membrane, process of self-assembly of lipids randomly dispersed in volume. It was shown that the coarse-grained model, developed exclusively from all-atomic simulation data, reproduces well all the basic features of lipids in water solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Feller SE, MacKerell AD (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104:7510–7515

    Article  Google Scholar 

  • Goetz R, Gompper G, Lipowsky R (1999) Mobility and elasticity of self-assembled membranes. Phys Rev Lett 82:221–224

    Article  ADS  Google Scholar 

  • Kranenburg M, Venturoli M, Smit B (2003) Phase behavior and induced interdigitation in bilayers studied with dissipative particle dynamics. J Phys Chem B 107:11491–11501

    Article  Google Scholar 

  • Kranenburg M, Nicolas J-P, Smit B (2004) Comparison of mesoscopic phospholipid - water models. Phys Chem Chem Phys 6(16):4142–4151

    Article  Google Scholar 

  • Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 79:426–433

    Article  PubMed  Google Scholar 

  • Lobaskin V, Lyubartsev AP, Linse P (2001) Effective macroion-macroion potentials in assymmetric electrolytes. Phys Rev E 63:020401

    Article  ADS  Google Scholar 

  • Lowe CP (1999) An alternative approach to dissipative particle dynamics. Europhys Lett 47:145–151

    Article  ADS  Google Scholar 

  • Lyubartsev AP, Laaksonen A (1995) Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. Phys Rev E 52(4):3730–3737

    Article  ADS  Google Scholar 

  • Lyubartsev AP, Laaksonen A (1997) Osmotic and activity coefficients from effective potentials for hydrated ions. Phys Rev E 55(5):5689–5696

    Article  ADS  Google Scholar 

  • Lyubartsev AP, Laaksonen A (1999) Effective potentials for ion – DNA interactions. J Chem Phys 111(24):11207–11215

    Article  ADS  Google Scholar 

  • Lyubartsev AP, Laaksonen A (2000) A general and scalable parallel software package for arbitrary mixtures of molecules. Comput Phys Commun 128:565–589

    Article  MATH  ADS  Google Scholar 

  • Lyubartsev AP, Laaksonen A (2004) On the reduction of molecular degrees of freedom in computer simulations. Lect Notes Phys 640:219–244

    ADS  Google Scholar 

  • Marrink SJ, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168

    Article  Google Scholar 

  • Marrink SJ, Mark AE (2003) Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. J Am Chem Soc 125(49):15233–15242

    Article  PubMed  Google Scholar 

  • Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    Article  Google Scholar 

  • Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML (1996) Explicit reversible integrators for extended systems dynamics. Mol Phys 87(5):1117–1157

    Article  ADS  Google Scholar 

  • Noguchi H, Takasu M (2001) Self-assembly of amphiphiles into vesicles: a brownian dynamics simulation. Phys Rev E 64:041913

    Article  ADS  Google Scholar 

  • Norberg J, Nilsson L (2003) Advances in biomolecular simulations: methodology and recent applications. Quart Rev Biophys 36:257–306

    Article  Google Scholar 

  • Patra M, Karttunen M, Hyvönen MT, Falck E, Lindqvist P, Vattulainen I (2003) Molecular dynamics simulations of lipid bilayers: Major artifacts due to truncating electrostatic interactions. Biophys J 84:3636–3645

    PubMed  Google Scholar 

  • Reith D, Pütz M, Müller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comp Chem 24:1624–1636

    Article  Google Scholar 

  • Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Klein ML (2001) A coarse grained model for phospholipid simulations. J Phys Chem B 105:4464–4470

    Article  Google Scholar 

  • Soper AK (1996) Empirical potential Monte Carlo simulation of fluid structure. Chem Phys 202:295–306

    Article  ADS  Google Scholar 

  • Stevens MJ (2004) Coarse-grained simulations of lipid bilayers. J Chem Phys 121(23):11942–11948

    Article  PubMed  ADS  Google Scholar 

  • Sum AK, Faller R, de Pablo JJ (2003) Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. Biophys J 85(5):2830–2844

    PubMed  Google Scholar 

  • Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270

    PubMed  Google Scholar 

  • Tielerman DP, Biggin PC, Smith GR, Sansom MSP (2001) Simulation approaches to ion channel structure–function relationships. Quart Rev Biophys 34:473–561

    Google Scholar 

  • Toukan K, Rahman A (1985) Molecular dynamics study of atomic motions in water. Phys Rev B 31:2643–2648

    Article  ADS  Google Scholar 

  • Wang W, Donini O, Reyes CM, Kollman PA (2001) Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 30:211–243

    Article  PubMed  Google Scholar 

  • Yamamoto S, Maruyama Y, Hyodo S (2002) Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. J Chem Phys 116:5842–5849

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks the Center for Parallel Computing (PDC) at the Royal Institute of Technology for granting the use of computer facilities. The work has been supported by the Swedish Research Council (Vetenskapsrådet)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Lyubartsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubartsev, A.P. Multiscale modeling of lipids and lipid bilayers. Eur Biophys J 35, 53–61 (2005). https://doi.org/10.1007/s00249-005-0005-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-005-0005-y

Keywords

Navigation