Skip to main content
Log in

Single-spanning membrane protein insertion in membrane mimetic systems: role and localization of aromatic residues

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Membrane protein insertion in the lipid bilayer is determining for their activity and is governed by various factors such as specific sequence motifs or key amino-acids. A detailed fluorescence study of such factors is exemplified with PMP1, a small (38 residues) single-membrane span protein that regulates the plasma membrane H+-ATPase in yeast and specifically interacts with phosphatidylserines. Such interactions may stabilize raft domains that have been shown to contain H+-ATPase. Previous NMR studies of various fragments have focused on the critical role of interfacial residues in the PMP1 structure and intermolecular interactions. The C-terminal domain contains a terminal Phe (F38), a single Trp (W28) and a single Tyr (Y25) that may act together to anchor the protein in the membrane. In order to describe the location and dynamics of W28 and the influence of Y25 on protein insertion within membrane, we carried out a detailed steady-state and time-resolved fluorescence study of the synthetic G13-F38 fragment and its Tyr-less mutant, Y25L in various membrane mimetic systems. Detergent micelles are conveniently used for this purpose. We used dodecylphosphocholine (DPC) in order to compare with and complement previous NMR results. In addition, dodecylmaltoside (DM) was used so that we could apply our recently described new quenching method by two brominated analogs of DM (de Foresta et al. 2002, Eur. Biophys. J. 31:185–97). In both systems, and in the presence and absence of Y25, W28 was shown to be located below but close to the polar headgroup region, as shown by its maximum emission wavelengths (λmax), curves for the quenching of Trp by the brominated analogs of DM and bimolecular constants for quenching (kq) by acrylamide. Results were interpreted by comparison with calibration data obtained with fluorescent model peptides. Time-resolved anisotropy measurements were consistent with PMP1 fragment immobilization within peptide-detergent complexes. We tentatively assigned the two major Trp lifetimes to the Trp (χ1=60° and 180°) rotamers, based on the recent lifetime–rotamer correlation proposed for model cyclic peptides (Pan and Barkley 2004, Biophys J 86:3828–35). We also analyzed the role of the hydrophobic anchor, by comparing the micelle binding of fragments of various lengths including the synthesized full-length protein and detected peculiar differences for protein interaction with the polar headgroups of DM or DPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PMP1 (or 2):

Plasma membrane proteolipid 1 (or 2)

PLN:

Phospholamban

SLN:

Sarcolipin

DM:

Dodecylmaltoside

BrDM:

7,8-dibromododecylmaltoside

BrUM:

10,11-dibromoundecanoylmaltoside

DPC:

Dodecylphosphocholine

SDS:

Sodium dodecyl sulfate

POPS:

1-palmitoyl-2-oleoyl-3-glycerophosphatidylserine

NATA:

N-acetyltryptophanamide

TOE:

Tryptophan octyl ester

SR:

Sarcoplasmic reticulum

MEM:

Maximum entropy method

P3:

K2WL9AL9K2A

P5:

K2CLWL7AL9K2A

P7:

K2CL3WL5AL9K2A

P9:

K2CL5WL3AL9K2A

P11:

K2CL7WLAL9K2A

P13:

K2CL9WL9K2A

HATU:

O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

DIPEA:

N,N-diisopropylethylamine

TFA:

Trifluoroacetic acid

MPLC:

Medium-pressure liquid chromatography

References

  • Ababou A, Bombarda E (2001) On the involvement of electron transfer reactions in the fluorescence decay kinetics heterogeneity of proteins. Protein Sci 10:2102–2113

    Article  PubMed  Google Scholar 

  • Adams PD, Chen Y, Ma K, Zagorski MG, Sönnichsen FD, McLaughlin ML, Barkley MD (2002) Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J Am Chem Soc 124:9278–9286

    Article  PubMed  Google Scholar 

  • Asahi M, Kimura Y, Kurzydlowski K, Tada M, MacLennan DH (1999) Transmembrane helix M6 in sarco(endo)plasmic reticulum Ca2+-ATPase forms a functional interaction site with phospholamban. Evidence for physical interactions at other sites. J Biol Chem 274:32855–32862

    Article  PubMed  Google Scholar 

  • Asahi M, Sugita Y, Kurzydlowski K, De Leon S, Tada M, Toyoshima C, MacLennan DH (2003) Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban. Proc Natl Acad Sci USA 100:5040–5045

    Article  PubMed  ADS  Google Scholar 

  • Beswick V, Guerois R, Cordier-Ochsenbein F, Coïc YM, Huynh-Dinh T, Tostain J, Noël JP, Sanson A, Neumann JM (1998a) Dodecylphosphocholine micelles as a membrane-like environment: new results from NMR relaxation and paramagnetic relaxation enhancement analysis. Eur Biophys J 28:48–58

    Article  Google Scholar 

  • Beswick V, Roux M, Navarre C, Coïc YM, Huynh-Dinh T, Goffeau A, Sanson A, Neumann JM (1998b) 1 H- and 2 H-NMR studies of a fragment of PMP1, a regulatory subunit associated with the yeast plasma membrane H+-ATPase. Conformational properties and lipid–peptide interactions. Biochimie 80:451–459

    Article  PubMed  Google Scholar 

  • Bouhss A, Vincent M, Munier H, Gilles A-M, Takahashi M, Bârzu O, Danchin A, Gallay J (1996) Conformational transitions within the calmodulin–binding site of Bordetella pertussis adenylate cyclase studied by time-resolved fluorescence of Trp242 and circular dichroism. Eur J Biochem 237:619–628

    Article  PubMed  Google Scholar 

  • Brochon JC (1994) Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol 240:262–311

    Article  PubMed  Google Scholar 

  • Brown LR, Bösch C, Wüthrich K (1981) Location and orientation relative to the micelle surface for glucagon in mixed micelles with dodecylphosphocholine: EPR and NMR studies. Biochim Biophys Acta 642:296–312

    Article  PubMed  Google Scholar 

  • Chamberlain AK, Bowie JU (2004) Analysis of side-chain rotamers in transmembrane proteins. Biophys J 87:3460–3469

    Article  PubMed  Google Scholar 

  • Chan WC, White PD (2000) Fmoc solid phase peptide synthesis. A practical approach. Oxford University Press, New York

    Google Scholar 

  • Chen Y, Barkley MD (1998) Toward understanding tryptophan fluorescence in proteins. Biochemistry 37:9976–9982

    Article  PubMed  Google Scholar 

  • Dupuy C, Auvray X, Petipas C, Rico-Lattes I, Lattes A (1997) Anomeric effects on the structure of micelles of alkyl maltosides in water. Langmuir 13:3965–3967

    Article  Google Scholar 

  • East JM, Lee AG (1982) Lipid selectivity of the calcium and magnesium ion dependent adenosinetriphosphatase, studied with fluorescence quenching by a brominated phospholipid. Biochemistry 21:4144–4151

    Article  PubMed  Google Scholar 

  • Eftink MR (1991) Fluorescence techniques for studying protein structure. Methods Biochem Anal 35:127–205

    Article  PubMed  Google Scholar 

  • Fernández C, Wüthrich K (2003) NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett 555:144–150

    Article  PubMed  Google Scholar 

  • de Foresta B, Legros N, Plusquellec D, le Maire M, Champeil P (1996) Brominated detergents as tools to study protein-detergent interactions. Eur J Biochem 241:343–354

    Article  PubMed  Google Scholar 

  • de Foresta B, Gallay J, Sopkova J, Champeil P, Vincent M (1999) Tryptophan octyl ester in detergent micelles of dodecylmaltoside: fluorescence properties and quenching by brominated detergent analogs. Biophys J 77:3071–3084

    PubMed  Google Scholar 

  • de Foresta B, Tortech L, Vincent M, Gallay J (2002) Location and dynamics of tryptophan in transmembrane alpha-helix peptides: a fluorescence and circular dichroism study. Eur Biophys J 31:185–197

    Article  PubMed  Google Scholar 

  • Jones DH, Golding MC, Barr KJ, Fong GH, Kidder GM (2001) The mouse Na+ -K+-ATPase γ-subunit gene (Fxyd2) encodes three developmentally regulated transcripts. Physiol Genomics 6:129–135

    PubMed  Google Scholar 

  • Killian JA, von Heijne G (2000) How proteins adapt to a membrane-water interface. Trends Biochem Sci 25:429–434

    Article  PubMed  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer, New York

    Google Scholar 

  • Lauterwein J, Bösch C, Brown LR, Wüthrich K (1979) Physicochemical studies of the protein–lipid interactions in melittin-containing micelles. Biochim Biophys Acta 556:244–264

    Article  PubMed  Google Scholar 

  • Le Maire M, Champeil P, Møller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111

    Article  PubMed  Google Scholar 

  • Liu B, Thalji RK, Adams PD, Fronczek FR, McLaughlin ML, Barkley MD (2002) Fluorescence of cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid: a single tryptophan χ1 rotamer model. J Am Chem Soc 124:13329–13338

    Article  PubMed  Google Scholar 

  • Livesey AK, Brochon JC (1987) Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method. Biophys J 52:693–706

    Google Scholar 

  • London E, Feigenson GW (1981) Fluorescence quenching in model membranes. 1 Characterization of quenching caused by a spin-labeled phospholipid. Biochemistry 20:1932–1938

    Article  PubMed  Google Scholar 

  • MacKerell AD Jr (1995) Molecular dynamics simulation analysis of a sodium dodecyl sulfate micelle in aqueous solution: decreased fluidity of the micelle hydrocarbon interior. J Phys Chem 99:1846–1855

    Article  Google Scholar 

  • Mascioni A, Karim C, Barany G, Thomas DD, Veglia G (2002) Structure and orientation of sarcolipin in lipid environments. Biochemistry 41:475–482

    Article  PubMed  Google Scholar 

  • Metcalfe EE, Zamoon J, Thomas DD, Veglia G (2004) 1 H/15 N heteronuclear NMR spectroscopy shows four dynamic domains for phospholamban reconstituted in dodecylphosphocholine micelles. Biophys J 87:1205–1214

    Article  PubMed  Google Scholar 

  • Møller JV, le Maire M (1993) Detergent binding as a measure of hydrophobic surface area of integral membrane proteins. J Biol Chem 268:18659–18672

    PubMed  Google Scholar 

  • Møller JV, le Maire M, Andersen JP (1986) Uses of non-ionic and bile salt detergents in the study of membrane proteins. In: Watts et de Pont (eds) “Progress in Protein-Lipid Interactions” vol 2. Elsevier Science Publishers BV (Biomedical division), pp 147–196

  • Mousson F, Beswick V, Coïc YM, Baleux F, Huynh-Dinh T, Sanson A, Neumann JM (2001a) Concerted influence of key amino acids on the lipid binding properties of a single-spanning membrane protein: NMR and mutational analysis. Biochemistry 40:9993–10000

    Article  PubMed  Google Scholar 

  • Mousson F, Beswick V, Coïc YM, Huynh-Dinh T, Sanson A, Neumann JM (2001b) Investigating the conformational coupling between the transmembrane and cytoplasmic domains of a single-spanning membrane protein A 1 H-NMR study. FEBS Lett 505:431–435

    Article  PubMed  Google Scholar 

  • Mousson F, Coïc YM, Baleux F, Beswick V, Sanson A, Neumann JM (2002) Deciphering the role of individual acyl chains in the interaction network between phosphatidylserines and a single-spanning membrane protein. Biochemistry 41:13611–13616

    Article  PubMed  Google Scholar 

  • Navarre C, Ghislain M, Leterme S, Ferroud C, Dufour JP, Goffeau A (1992) Purification and complete sequence of a small proteolipid associated with the plasma membrane H+-ATPase of Saccharomyces cerevisiae. J Biol Chem 267:6425–6428

    PubMed  Google Scholar 

  • Navarre C, Catty P, Leterme S, Dietrich F, Goffeau A (1994) Two distinct genes encode small isoproteolipids affecting plasma membrane H+-ATPase activity of Saccharomyces cerevisiae. J Biol Chem 269:21262–21268

    PubMed  Google Scholar 

  • Pan CP, Barkley MD (2004) Conformational effects on tryptophan fluorescence in cyclic hexapeptides. Biophys J 86:3828–3835

    Article  PubMed  Google Scholar 

  • Persson S, Killian JA, Lindblom G (1998) Molecular ordering of interfacially localized tryptophan analogs in ester- and ether-lipid bilayers studied by 2 H-NMR. Biophys J 75:1365–1371

    PubMed  Google Scholar 

  • Peterson GL, Rosenbaum LC, Schimerlik MI (1988) Solubilization and hydrodynamic properties of pig atrial muscarinic acetylcholine receptor in dodecyl β-D-maltoside. Biochem J 255:553–560

    PubMed  Google Scholar 

  • de Planque MR, Bonev BB, Demmers JA, Greathouse DV, Koeppe II RE, Separovic F, Watts A, Killian JA (2003) Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide–lipid interactions. Biochemistry 42:5341–5348

    Article  PubMed  Google Scholar 

  • Reshetnyak YK, Koshevnik Y, Burstein EA (2001) Decomposition of protein tryptophan fluorescence spectra into log-normal components III Correlation between fluorescence and microenvironment parameters of individual tryptophan residues. Biophys J 81:1735–1758

    PubMed  Google Scholar 

  • Ridder AN, Morein S, Stam JG, Kuhn A, de Kruijff B, Killian JA (2000) Analysis of the role of interfacial tryptophan residues in controlling the topology of membrane proteins. Biochemistry 39:6521–6528

    Article  PubMed  Google Scholar 

  • Ross JB, Wyssbrod HR, Porter RA, Schwartz GP, Michaels CA, Laws WR (1992) Correlation of tryptophan fluorescence intensity decay parameters with 1 H NMR-determined rotamer conformations: [tryptophan2 ]oxytocin. Biochemistry 31:1585–1594

    Article  PubMed  Google Scholar 

  • Rouvière N, Vincent M, Craescu CT, Gallay J (1997) Immunosuppressor binding to the immunophilin FKBP59 affects the local structural dynamics of a surface β-strand: time-resolved fluorescence study. Biochemistry 36:7339–7352

    Article  PubMed  Google Scholar 

  • Roux M, Beswick V, Coïc YM, Huynh-Dinh T, Sanson A, Neumann JM (2000) PMP1 18–38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a 2 H-NMR study. Biophys J 79:2624–2631

    Article  PubMed  Google Scholar 

  • Sillen A, Díaz JF, Engelborghs Y (2000) A step toward the prediction of the fluorescence lifetimes of tryptophan residues in proteins based on structural and spectral data. Protein Sci 9:158–169

    PubMed  Google Scholar 

  • Smith W, Broadbridge R, East JM, Lee AG (2002) Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum. Biochem J 361:277–286

    Article  PubMed  Google Scholar 

  • Soulié S, de Foresta B, Møller JV, Bloomberg GB, Groves JD, le Maire M (1998) Spectroscopic studies of the interaction of Ca2+-ATPase-peptides with dodecyl maltoside and its brominated analog. Eur J Biochem 257:216–227

    Article  PubMed  Google Scholar 

  • Szabo AG, Rayner DM (1980) Fluorescence decay of Trp conformers in aqueous solution. J Am Chem Soc 102:554–563

    Article  Google Scholar 

  • Tieleman DP, van der Spoel D, Berendsen HJC (2000) Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and chain relaxation. J Phys Chem B 104:6380–6388

    Article  Google Scholar 

  • Tortech L, Jaxel C, Vincent M, Gallay J, de Foresta B (2001) The polar headgroup of the detergent governs the accessibility to water of tryptophan octyl ester in host micelles. Biochim Biophys Acta 1514:76–86

    Article  PubMed  Google Scholar 

  • Ulmschneider MB, Sansom MSP (2001) Amino acid distributions in integral membrane protein structures. Biochimica Biophysica Acta (BBA) Biomembranes 1512:1–14

    Article  Google Scholar 

  • Vivian JT, Callis PR (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80:2093–2109

    PubMed  Google Scholar 

  • Willis KJ, Neugebauer W, Sikorska M, Szabo AG (1994) Probing α-helical secondary structure at a specific site in model peptides via restriction of tryptophan side-chain rotamer conformation. Biophys J 66:1623–1630

    PubMed  Google Scholar 

  • Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37:14713–14718

    Article  PubMed  Google Scholar 

  • Zamoon J, Mascioni A, Thomas DD, Veglia G (2003) NMR solution structure and topological orientation of monomeric phospholamban in dodecylphosphocholine micelles. Biophys J 85:2589–2598

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the technical staff of the Laboratoire pour l’Utilisation du Rayonnement Electromagnétique (LURE) for running the synchrotron ring during the beam sessions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice de Foresta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coïc, YM., Vincent, M., Gallay, J. et al. Single-spanning membrane protein insertion in membrane mimetic systems: role and localization of aromatic residues. Eur Biophys J 35, 27–39 (2005). https://doi.org/10.1007/s00249-005-0002-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-005-0002-1

Keywords

Navigation