Skip to main content
Log in

L-type calcium channel gating is modulated by bradykinin with a PKC-dependent mechanism in NG108-15 cells

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Bradykinin (BK) excites dorsal root ganglion cells, leading to the sensation of pain. The actions of BK are thought to be mediated by heterotrimeric G protein-regulated pathways. Indeed there is strong evidence that in different cell types BK is involved in phosphoinositide breakdown following activation of Gq/11. In the present study we show that the Ca2+ current flowing through L-type voltage-gated Ca2+ channels in NG108-15 cells (differentiated in vitro to acquire a neuronal phenotype), measured using the whole-cell patch clamp configuration, is reversibly inhibited by BK in a voltage-independent fashion, suggesting a cascade process where a second messenger system is involved. This inhibitory action of BK is mimicked by the application of 1,2-oleoyl-acetyl glycerol (OAG), an analog of diacylglycerol that activates PKC. Interestingly, OAG occluded the effects of BK and both effects were blocked by selective PKC inhibitors. The down modulation of single L-type Ca2+ channels by BK and OAG was also investigated in cell-attached patches. Our results indicate that the inhibitory action of BK involves activation of PKC and mainly shows up in a significant reduction of the probability of channel opening, caused by an increase and clustering of null sweeps in response to BK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akopian G, Walsh JP (2002) Corticostriatal paired-pulse potentiation produced by voltage-dependent activation of NMDA receptors and L-type Ca2+ channels. J Neurophysiol 87:157–165

    CAS  PubMed  Google Scholar 

  • Ashcroft FM, Proks P, Smith PA, Ammala C, Bokvist K, Rorsman P (1994) Stimulus-secretion coupling in pancreatic beta cells. J Cell Biochem 55:54–65

    CAS  PubMed  Google Scholar 

  • Bannister RA, Melliti K, Adams BA (2002) Reconstituted slow muscarinic inhibition of neuronal (CaV1.2c) L-type Ca 2+ channels. Biophys J 83:3256–3267

    CAS  PubMed  Google Scholar 

  • Barg S, Ma X, Eliasson L, Galvanovskis J, Gopel SO, Obermuller S, Platzer J, Renstrom E, Trus M, Atlas D, Striessnig J, Rorsman P (2001) Fast exocytosis with few Ca2+ channels in insulin-secreting mouse pancreatic B cells. Biophys J 81:3308–3323

    CAS  PubMed  Google Scholar 

  • Bell DC, Butcher AJ, Berrow NS, Page KM, Brust PF, Nesterova A, Stauderman KA, Seabrook GR, Nurnberg B, Dolphin AC (2001) Biophysical properties, pharmacology, and modulation of human, neuronal L-type (alpha1D, CaV1.3) voltage-dependent calcium currents. J Neurophysiol 85:816–827

    CAS  PubMed  Google Scholar 

  • Bley KR, Tsien RW (1990) Inhibition of Ca2+ and K+ channels in sympathetic neurons by neuropeptides and other ganglionic transmitters. Neuron 2:379–391

    Article  Google Scholar 

  • Boland LM, Allen AC, Dingledine R (1991) Inhibition by bradykinin of voltage-activated barium current in a rat dorsal root ganglion cell line: role of protein kinase C. J Neurosci 11:1140–1149

    CAS  PubMed  Google Scholar 

  • Bourinet E, Soong TW, Stea A, Snutch TP (1996) Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc Natl Acad Sci USA 93:1486–1491

    Article  CAS  PubMed  Google Scholar 

  • Burgess GM, Mullaney I, McNeill M, Dunn PM, Rang HP (1989) Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J Neurosci 9:3314–3325

    CAS  PubMed  Google Scholar 

  • Carabelli V, Hernandez-Guijo JM, Baldelli P, Carbone E (2001) Direct autocrine inhibition and cAMP-dependent potentiation of single L-type Ca2+ channels in bovine chromaffin cells. J Physiol 532:73–90

    Article  CAS  PubMed  Google Scholar 

  • Carbone E, Carabelli V, Cesetti T, Baldelli P, Hernandez-Guijo JM, Giusta L (2001) G-protein- and cAMP-dependent L-channel gating modulation: a manyfold system to control calcium entry in neurosecretory cells. Pflugers Arch 442:801–813

    Article  CAS  PubMed  Google Scholar 

  • Chad JE, Eckert R (1984) Calcium domains associated with individual channels can account for anomalous voltage relations of Ca-dependent responses. Biophys J 45:993–999

    CAS  PubMed  Google Scholar 

  • Cho H, Jae Boum Youm, Earm YE, Won-Kyung H (2001) Inhibition of acetylcholine-activated K+ current by chelerythrine and bisindolylmaleimide I in atrial myocytes from mice. Eur J Pharmacol 424:173–178

    Article  CAS  PubMed  Google Scholar 

  • Colquhoun D, Hawkes AG (1995) Single channel recording. In: Sackmann B, Neher E (eds) The principles of the stocastic interpretation of ion channel mechanisms. Plenum, New York, pp 397–482

    Google Scholar 

  • Connor M, Henderson G (1997) Bradykinin inhibition of N- and L-type calcium channel currents in NG108-15 cells. Neuropharmacol 36:115–124

    Article  CAS  Google Scholar 

  • Cruzblanca H, Duk-Su Koh, Hille B (1998) Bradykinin inhibits M current via phospholipase C and Ca2+ release from IP3-sensitive Ca2+ stores in rat sympathetic neurons. Proc Natl Acad Sci USA 95:7151–7156

    Article  CAS  PubMed  Google Scholar 

  • Davis PD, Elliott LH, Harris W, Hill CH, Hurst SA, Keech E, Kumar MK, Lawton G, Nixon JS, Wilkinson SE (1992) Inhibitors of protein kinase C. 2. Substituted bisindolylmaleimides with improved potency and selectivity. J Med Chem 35:994–1001

    CAS  PubMed  Google Scholar 

  • Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294:333–339

    Article  CAS  PubMed  Google Scholar 

  • Dolphin AC (2003) G Protein modulation of voltage-gated calcium channels. Pharmacol Rev 55:607–627

    Article  CAS  PubMed  Google Scholar 

  • Dray A, Perkins M (1993) Bradykinin and inflammatory pain. Trends Neurosci 16:99–104

    Article  CAS  PubMed  Google Scholar 

  • Evans GJ, Pocock JM (1999) Modulation of neurotransmitter release by dihydropyridine-sensitive calcium channels involves tyrosine phosphorylation. Eur J Neurosci 11:279–292

    Article  CAS  PubMed  Google Scholar 

  • Ewald DA, Pang IH, Sternweis PC, Miller RJ (1989) Differential G protein-mediated coupling of neurotransmitter receptors to Ca2+ channels in rat dorsal root ganglion neurons in vitro. Neuron 2:1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Finkbeiner S, Greenberg ME (1998) Ca2+ channel-regulated neuronal gene expression. J Neurobiol 37:171–189

    Article  CAS  PubMed  Google Scholar 

  • Ganong BR, Loomis CR, Hannun YA, Bell RM (1986) Specificity and mechanism of protein kinase C activation by an 1,2-diacylglycerols. Proc Natl Acad Sci USA 83:1184–1188

    CAS  PubMed  Google Scholar 

  • Haymes AA, Kwan JW, Arena JP, Kass RS, Hinkle PM (1992) Activation of protein kinase C reduces calcium channel activity of GH3 pituitary cells. Am J Physiol 262:C1211–C1219

    CAS  PubMed  Google Scholar 

  • Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380:258–262

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin- signaling cascade. J Neurosci 20:8987–8995

    CAS  PubMed  Google Scholar 

  • Hess P, Lansman JB, Tsien RW (1984) Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 311:538–544

    CAS  PubMed  Google Scholar 

  • Hidaka H, Inagaki M, Kawamoto S, Sasaki J (1984) Isoquinoline sulfonamides, novel and potent inhibitors of cyclic nucleotide protein kinase and protein kinase C. Biochemistry 23:5036–5041

    CAS  PubMed  Google Scholar 

  • Hilgemann DW, Feng SD, Nasuhoglu C (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Science STKE 111:RE19

    Google Scholar 

  • Hockberger P, Toselli M, Swandulla D, Lux HD (1989) A dacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation. Nature 338:340–342

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Vandenberg CA, Lange K (1984) Statistical analysis of single sodium channels: effects of N-bromoacetamide. Biophys J 45:323–335

    CAS  PubMed  Google Scholar 

  • Howe AR, Surmeier DJ (1995) Muscarinic receptors modulate N-, P-, and L-type Ca2+ currents in rat striatal neurons through parallel pathways. J Neurosci 15:458–469

    CAS  PubMed  Google Scholar 

  • Ikeda SR (1996) Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature 380:255–258

    Article  CAS  PubMed  Google Scholar 

  • Kaibuchi K, Takai Y, Sawamura M, Hoshijima M, Fujikura T, Nishizuka Y, (1983) Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J Biol Chem 258:6701–674

    CAS  PubMed  Google Scholar 

  • Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87:1095–1102

    CAS  PubMed  Google Scholar 

  • Kasai H, Neher E (1992) Dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels in a mammalian neuroblastoma-glioma cell line. J Physiol 448:161–188

    CAS  PubMed  Google Scholar 

  • Kramer RH, Kaczmarek LK, Levitan ES (1991) Neuropeptide inhibition of voltage-gated calcium channels mediated by mobilization of intracellular calcium. Neuron 6:557–563

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Elmslie KS (1999) Gating of single N-type calcium channels recorded from bullfrog sympathetic neurons. J Gen Physiol 113:111–124

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Rhee SG (1995) Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr Opin Cell Biol 7:183–189

    Article  CAS  PubMed  Google Scholar 

  • Mathie A, Bernheim L, Hille B (1992) Inhibition of N- and L-type calcium channels by muscarinic receptor activation in rat sympathetic neurons. Neuron 8:907–914

    Article  CAS  PubMed  Google Scholar 

  • McCullough LA, Egan TM, Westfall TC (1998) Neuropeptide Y inhibition of calcium channels in PC-12 pheochromocytoma cells. Am J Physiol 274:C1290–C1297

    CAS  PubMed  Google Scholar 

  • McDonough SI, Swartz KJ, Mintz IM, Boland LM, Bean BP (1996) Inhibition of calcium channels in rat central and peripheral neurons by omega-conotoxin MVIIC. J Neurosci 16:2612–2623

    CAS  PubMed  Google Scholar 

  • McHugh D, Sharp EM, Scheuer T, Catterall WA (2000) Inhibition of cardiac L-type calcium channels by protein kinase C phosphorylation of two sites in the N-terminal domain. Proc Natl Acad Sci USA 97:12334–12338

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi S, Catt KJ, Balla T (1995) Wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc Natl Acad Sci USA 92:5317

    CAS  PubMed  Google Scholar 

  • Nishizuka Y (1984) Turnover of inositol phospholipids and signal transduction. Science 225:1365–1370

    CAS  PubMed  Google Scholar 

  • Osugi T, Imaizumi T, Mizushima A, Uchida S, Yoshida H (1987) Role of protein regulating guanine nucleotide binding in phosphoinositide breakdown and calcium mobilization by bradykinin in neuroblastoma × glioma hybrid NG108-15 cells: effects of pertussis toxin and cholera toxin on receptor-mediated signal transduction. Eur J Pharmacol 137:207–218

    Article  CAS  PubMed  Google Scholar 

  • Oz M, Melia MT, Soldatov NM, Abernethy DR, Morad M (1998) Functional coupling of human L-type Ca2+ channels and angiotensin AT1A receptors coexpressed in xenopus laevis oocytes: involvement of the carboxyl-terminal Ca2+ sensors. Mol Pharmacol 54:1106–1112

    CAS  PubMed  Google Scholar 

  • Plummer MR, Logothetis DE, Hess P (1989) Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 2:1453–1463

    Article  CAS  PubMed  Google Scholar 

  • Rane, SG, Dunlap K (1986) Kinase C activator 1,2-oleylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons. Proc Natl Acad Sci USA 83:184–188

    CAS  PubMed  Google Scholar 

  • Rane SG, Holz GGT, Dunlap K (1987) Dihydropyridine inhibition of neuronal calcium current and substance P release. Pflugers Arch 409:361–366

    CAS  PubMed  Google Scholar 

  • Sand O, Chen BM, Grinnell AD (2001) Contribution of L-type Ca2+ channels to evoked transmitter release in cultured Xenopus nerve-muscle synapses. J Physiol 536:21–33

    Article  CAS  PubMed  Google Scholar 

  • Schwab Y, Mouton J, Chasserot-Golaz S, Marty I, Maulet Y, Jover E (2001) Calcium-dependent translocation of synaptotagmin to the plasma membrane in the dendrites of developing neurones. Brain Res Mol Brain Res 96:1–13

    CAS  PubMed  Google Scholar 

  • Sigworth FJ, Sine SM (1987) Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J 52:1047–1054

    CAS  PubMed  Google Scholar 

  • Stevens EB, Shah BS, Pinnock RD, Lee K (1999) Bombesin receptors inhibit G protein-coupled inwardly rectifying K+ channels expressed in Xenopus oocytes through a protein kinase C-dependent pathway. Mol Pharmacol 55:1020–1027

    CAS  PubMed  Google Scholar 

  • Striessnig J (1999) Pharmacology, structure and function of cardiac L-type Ca2+ channels. Cell Physiol Biochem 9:242–269

    Article  CAS  PubMed  Google Scholar 

  • Suh BC, Hille B (2002) Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35:507–520

    Article  CAS  PubMed  Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    Article  CAS  PubMed  Google Scholar 

  • Toselli M, Tosetti P, Taglietti V (1997) μ and δ opioid receptor activation inhibits ω-conotoxin-sensitive calcium channels in in a voltage- and time-dependent mode in the human neuroblastoma cell line SH-SY5Y. Pflugers Arch 433:587–596

    Article  CAS  PubMed  Google Scholar 

  • tosetti P, Parente V, Taglietti V, Dunlap K, Toselli M (2003) Chick RGS2L demonstrates concentration-dependent selectivity for PTX-sensitive and -insensitive pathways that inhibit L-type Ca2+ channels. J Physiol 549:157–169

    Article  CAS  PubMed  Google Scholar 

  • Toullec D, Pianettis P, Coste H, Belleverguel P, Grand-Perret T, Ajakanee M, Baudet V, Boissin P, Boursier E, Loriolle F, Duhamell L, Charon D, Kirilovsky J (1991) The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266:15771–15778

    CAS  PubMed  Google Scholar 

  • Tsunoo A, Yoshii M, Narahashi T (1986) Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108-15 cells. Proc Natl Acad Sci USA 83:9832–9836

    CAS  PubMed  Google Scholar 

  • Varnai P, Balla T (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to Myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 143:501–510

    Article  CAS  PubMed  Google Scholar 

  • Weisskopf MG, Bauer EP, LeDoux JE (1999) L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J Neurosci 19:10512–10519

    CAS  PubMed  Google Scholar 

  • Wilk-Blaszczak MA, Singer WD, Belardetti F (1996) Three distinct G protein pathways mediate inhibition of neuronal calcium current by bradykinin. J Neurophysiol 76:3559–3562

    CAS  PubMed  Google Scholar 

  • Zhang L, Lee JK, John SA, Uozumi N, Kodama I (2004) Mechanosensitivity of GIRK channels is mediated by protein kinase C-dependent channel-phosphatidylinositol 4,5-bisphosphate interaction. J Biol Chem 279:7037–7047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Miur (FIRB 2001 and PRIN 2002) and INFM to M.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Toselli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toselli, M., Taglietti, V. L-type calcium channel gating is modulated by bradykinin with a PKC-dependent mechanism in NG108-15 cells. Eur Biophys J 34, 217–229 (2005). https://doi.org/10.1007/s00249-004-0444-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0444-x

Keywords

Navigation