Skip to main content

Advertisement

Log in

Interrelation between HeLa-S3 cell transfection and hemolysis in red blood cell suspension using pulsed ultrasound of various duty cycles

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We have studied the in vitro transfection of a plasmid DNA with the lacZ gene to HeLa-S3 cells and hemolysis in a red blood cell (RBC) suspension under pulsed ultrasound with duty cycles γ of 10, 20 and 30% using a digital sonifier at a frequency of 20 kHz and an intensity of 6.2 W/cm2 on the surface of a horn tip. Cultured HeLa-S3 cells in suspension were exposed to pulsed ultrasound for an apparent exposure time t′ from 0 to 60 s. HeLa-S3 viability decreased as a single exponential function of the total exposure time t=γt′ with a common time constant τ=3.8 s for three duty cycles. Transfection was evaluated by counting the number of β-galactosidase(β-Gal)-positive cells relative to the total number of cells. Pulsed ultrasound provided an enhanced transfer of the β-Gal plasmid to HeLa-S3 cells, 3.4-fold as compared with that in the case of the control. The optimal transfection efficiencies were 0.75, 0.80 and 0.74% near t=τ with γ=10, 20 and 30%, respectively. The number ratio of β-Gal-positive cells to the surviving cells after exposure increased with t′ according to a modified logistic equation. The degree of hemolysis also increased exponentially with t′ at a time constant τ′=τ0/γ for the RBC suspension in physiological saline at a hematocrit concentration of 0.5% with τ0=0.9 s. Thus the total exposure time for the optimal transfection efficiency was τ, that is, nearly four times of τ0. Hemolysis in the RBC suspension may be a useful model for determining optimal transfection by pulsed ultrasound of various duty cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amado RG, Chen ISY (1999) Lentiviral vectors – the promise of gene therapy within reach? Science 285:674–676

    Article  CAS  PubMed  Google Scholar 

  • Anwer K, Kao G, Proctor B, Anscombe I, Florack V, Earls R, Wilson E, McCreery T, Unger E, Rolland A, Sullivan SM (2000) Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther 7:1833–1839

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Thrall BD, Miller DL (1997) Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 23:953–959

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Thrall BD, Gies RA, Miller DL (1998) In vivo transfection of melanoma cells by lithotripter shock waves. Cancer Res 58:219–221

    Google Scholar 

  • Carstensen EL, Kelly P, Church CC, Brayman AA, Child SZ, Raeman CH, Schery L (1993) Lysis of erythrocytes by exposure to CW ultrasound. Ultrasound Med Biol 19:147–165

    Article  CAS  PubMed  Google Scholar 

  • Daniels S, Kodama T, Price DJ (1995) Damage to blood cells induced by acoustic cavitation. Ultrasound Med Biol 21:105–111

    Article  CAS  PubMed  Google Scholar 

  • Davis LG, Dibner MD, Battey JF (1983) Basic methods to molecular biology. Elsevier, New York, pp 92–97

  • Dobashi T, Goto H, Sakanishi A, Oka S (1987) Erythrocyte sedimentation rate I. Volume fraction dependence in saline solution. Biorheol 24:153–162

    CAS  PubMed  Google Scholar 

  • Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG (1987) Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci USA 84:8463–8467

    CAS  PubMed  Google Scholar 

  • Finkel T, Epstein SE (1995) Gene therapy for vascular disease. FASEB J 9:843–851

    CAS  PubMed  Google Scholar 

  • Frenkel PA, Chen S, Thai T, Shohet RV, Grayburn PA (2002) DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med Biol 28:817–822

    Article  PubMed  Google Scholar 

  • Gambihler S, Delius M, Ellwart JW (1994) Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves. J Membr Biol 141:267–275

    CAS  PubMed  Google Scholar 

  • Garcia ML, Burgos J, Sanz B, Ordoňez JA (1989) Effect of heat and ultrasonic waves on the survival of two strains of Bacillus subtilis. J Appl Bacteriol 67:619–628

    CAS  PubMed  Google Scholar 

  • Hennig AK, Ogilvie JM, Ohlemiller KK, Timmers AM, Hauswirth WW, Sands MS (2004) AAV-mediated intravitreal gene therapy reduces lysosomal storage in the retinal pigmented epithelium and improves retinal function in adult MPS VII mice. Mol Ther 10:106–116

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Huang X, Yoshikoshi A, Takatsuki H, Sakanishi A (2004) Influence of angiography contrast media on viability of endothelial cells in cultures. Colloids Surf B 33:205–210

    Article  CAS  Google Scholar 

  • Huber PE, Pfisterer P (2000) In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther 7:1516–1525

    Article  CAS  PubMed  Google Scholar 

  • Huber PE, Jenne J, Debus J, Wannenmacher MF, Pfisterer P (1999) A comparison of shock wave and sinusoidal-focused ultrasound-induced localized transfection of HeLa cells. Ultrasound Med Biol 25:1451–1457

    Article  CAS  PubMed  Google Scholar 

  • Joersbo M, Brunstedt J (1992) Sonication: a new method for gene transfer to plants. Physiol Plant 85:230–234

    Article  CAS  Google Scholar 

  • Kawai N, Iino M (2003) Molecular damage to membrane proteins induced by ultrasound. Ultrasound Med Biol 29:609–614

    Article  PubMed  Google Scholar 

  • Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME (1996) Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther 7:1339–1346

    CAS  PubMed  Google Scholar 

  • Koch S, Pohl P, Cobet U, Rainov NG (2000) Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects. Ultrasound Med Biol 26:897–903

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Kano E (1988) Effect of free radicals induced by ultrasonic cavitation on cell killing. Int J Radiat Biol 54:475–486

    CAS  PubMed  Google Scholar 

  • Lauer U, Bürgelt E, Squire Z, Messmer K, Hofschneider PH, Gregor M, Delius M (1997) Shock wave permeabilization as a new gene transfer method. Gene Ther 4:710–715

    Article  CAS  PubMed  Google Scholar 

  • Lawrie A, Brisken AF, Francis SE, Tayler DI, Chamberlain J, Crossman DC, Cumberland DC, Newman CM (1999) Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation 99:2617–2620

    CAS  PubMed  Google Scholar 

  • Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM (2000) Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 7:2023–2027

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lewis TN, Prausnitz MR (1998) Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharmacol Res 15:918–924

    Article  CAS  Google Scholar 

  • Lu QL, Liang HD, Partridge T, Blomley MJK (2003) Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 10:396–405

    Article  CAS  PubMed  Google Scholar 

  • Manome Y, Nakamura K, Ohno T, Furuhata H (2000) Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo. Hum Gene Ther 11:1521–1528

    Article  CAS  PubMed  Google Scholar 

  • Miller DL, Thomas RM, Williams AR (1991) Mechanisms for hemolysis by ultrasonic cavitation in the rotating exposure system. Ultrasound Med Biol 17:171–178

    Google Scholar 

  • Miller DL, Bao S, Gies RA, Thrall BD (1999) Ultrasonic enhancement of gene transfection in murine melanoma tumors. Ultrasound Med Biol 25:1425–1430

    Article  CAS  PubMed  Google Scholar 

  • Miller MW, Battaglia LF (2003) The relevance of cell size on ultrasound-induced hemolysis in mouse and human blood in vitro. Ultrasound Med Biol 29:1479–1485

    Article  PubMed  Google Scholar 

  • Miller MW, Miller DL, Brayman AA (1996) A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 22:1131–1154

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Blankschtein D, Langer R (1995) Ultrasound-mediated transdermal protein delivery. Science 269:850–853

    CAS  PubMed  Google Scholar 

  • Ogawa R, Kondo T, Honda H, Zhao QL, Fukuda S, Riesz P (2002) Effects of dissolved gases and echo contrast agent on ultrasound mediated in vitro gene transfection. Ultrason Sonochem 9:197–203

    Article  CAS  PubMed  Google Scholar 

  • Roth JA, Cristiano RJ (1997) Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 89:21–39

    Article  CAS  PubMed  Google Scholar 

  • Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K, Nakamura T, Ogihara T, Kaneda Y, Morishita R (2002) Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 9:372–380

    Article  CAS  PubMed  Google Scholar 

  • Tata DB, Dunn F, Tindall DJ (1997) Selective clinical ultrasound signals mediate differential gene transfer and expression in two human prostate cancer cell lines: LnCap and PC-3. Biochem Biophys Res Commun 234:64–67

    Article  CAS  PubMed  Google Scholar 

  • Unger EC, McCreery TP, Sweitzer RH (1997) Ultrasound enhances gene expression of liposomal transfection. Invest Radiol 32:723–727

    Article  CAS  PubMed  Google Scholar 

  • Wyber JA, Andrews J, D’Emanuele A (1997) The use of sonication for the efficient delivery of plasmid DNA into cells. Pharm Res 14:750–756

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Hirai Y, Tojo K (1996) Effect of ultrasound on rate of drug absorption through skin. J Chem Eng Jpn 29:812–816

    CAS  Google Scholar 

  • Yant SR, Ehrhardt A, Mikkelsen JG, Meuse L, Pham T, Kay MA (2002) Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol 20:999–1005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Toshihiko Saheki for instruction on plasmid vector preparation. We also thank Dr Yoshiharu Toyama for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sakanishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Uno, H., Takatsuki, H. et al. Interrelation between HeLa-S3 cell transfection and hemolysis in red blood cell suspension using pulsed ultrasound of various duty cycles. Eur Biophys J 34, 163–169 (2005). https://doi.org/10.1007/s00249-004-0439-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0439-7

Keywords

Navigation