Skip to main content
Log in

A new method to determine the structure of the metal environment in metalloproteins: investigation of the prion protein octapeptide repeat Cu2+ complex

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Since high-intensity synchrotron radiation is available, “extended X-ray absorption fine structure” spectroscopy (EXAFS) is used for detailed structural analysis of metal ion environments in proteins. However, the information acquired is often insufficient to obtain an unambiguous picture. ENDOR spectroscopy allows the determination of hydrogen positions around a metal ion. However, again the structural information is limited. In the present study, a method is proposed which combines computations with spectroscopic data from EXAFS, EPR, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). From EXAFS a first picture of the nearest coordination shell is derived which has to be compatible with EPR data. Computations are used to select sterically possible structures, from which in turn structures with correct H and N positions are selected by ENDOR and ESEEM measurements. Finally, EXAFS spectra are re-calculated and compared with the experimental data. This procedure was successfully applied for structure determination of the Cu2+ complex of the octapeptide repeat of the human prion protein. The structure of this octarepeat complex is rather similar to a pentapeptide complex which was determined by X-ray structure analysis. However, the tryptophan residue has a different orientation: the axial water is on the other side of the Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr Sect B 58:398–406

    Google Scholar 

  • Arnesano F, Banci L, Bertini I, Felli IC, Luchinat C, Thompsett AR (2003a) A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas syringae. J Am Chem Soc 125:7200–7208

    Article  CAS  PubMed  Google Scholar 

  • Arnesano F, Banci L, Bertini I, Mangani S, Thompsett AR (2003b) A redox switch in CopC: an intriguing copper trafficking protein that binds copper (I) and copper (II) at different sites. Proc Natl Acad Sci USA 100:3814–3819

    Article  CAS  PubMed  Google Scholar 

  • Aronoff-Spencer E, Burns CS, Avdievich NI, Gerfen GJ, Peisach J, Antholine WE, Ball HL, Cohen FE, Prusiner SB, Millhauser GL (2000) Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 39:13760–13771

    Article  CAS  PubMed  Google Scholar 

  • Binsted N, Strange RW, Hasnain SS (1992) Constrained and restrained refinement in EXAFS data analysis with curved-wave theory. Biochemistry 31:12117–12125

    CAS  PubMed  Google Scholar 

  • Bonomo RP, Impellizzeri G, Pappalardo G, Rizzarelli E, Tabbì G (2000) Copper(II) binding modes in the prions octapeptide PHGGGWGQ: a spectroscopic and voltammetric study. Chem Eur J 6:4195–4202

    Article  CAS  Google Scholar 

  • Brown DD (2001a) Prion and prejudice: normal protein and the synapse. Trends Neurosci 24:85–90

    Article  CAS  PubMed  Google Scholar 

  • Brown DR (2001b) Copper and prion disease. Brain Res Bull 55:165–173

    Article  CAS  PubMed  Google Scholar 

  • Brünger AT (1992) X-PLOR version 3.1. The Howard Hughes Medical Institute, Yale University, New Haven, Conn., USA

  • Brünger AT, Campbell RL, Clore GM, Gronenborn AM, Karplus M, Petsko GA, Teeter MM (1987) Solution of a protein crystal structure with a model obtained from NMR interproton distance restraints. Science 235:1049–1053

    Google Scholar 

  • Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WF, Millhauser GL (2002) Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry 41:3991–4001

    Article  CAS  PubMed  Google Scholar 

  • Cereghetti GM, Schweiger A, Glockshuber R, Van Doorslaer S (2001) Electron paramagnetic resonance evidence for binding of Cu2+ to the C-terminal domain of the murine prion protein. Biophys J 81:516–525

    CAS  PubMed  Google Scholar 

  • Comba P, Remenyi R (2002) A new molecular mechanics force field for the oxidized form of blue copper proteins. J Comput Chem 23:697–705

    Article  CAS  PubMed  Google Scholar 

  • Fonda L (1992) Multiple scattering theory of X-ray absorption: a review. J Condens Matter 4:8269–8302

    Article  CAS  Google Scholar 

  • Frisch MJT, Schlegel GW, Scuseria HB, Robb GE, Cheeseman MA, Zakrzewski JR, Montgomery VG, Stratmann JA Jr, Burant RE, et al. (1998) Gaussian 98. Gaussian, Pittsburgh, Pa., USA

  • Garnett AP, Viles JH (2003) Copper binding to the octarepeats of the prion protein. Affinity, specificity, folding and co-operativity: insights from circular dichroism. J Biol Chem 278:6795–6802

    Article  CAS  PubMed  Google Scholar 

  • Hasnain SS, Murphy LM, Strange RW, Grossmann JG, Clarke AR, Jackson GS, Collinge J (2001) XAFS study of the high-affinity copper-binding site of human PrP91–231 and its low-resolution structure in solution. J Mol Biol 311:467–473

    Article  CAS  PubMed  Google Scholar 

  • Hornshaw MP, McDermott JR, Candy JM, Lakey JH (1995) Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun 214:993–999

    Article  CAS  PubMed  Google Scholar 

  • Hurst GC, Henderson TA, Kreilick RW (1985) Angle-selected ENDOR spectroscopy. 1. Theoretical interpretation of ENDOR shifts from randomly orientated transition-metal complexes. J Am Chem Soc 107:7294–7299

    CAS  Google Scholar 

  • Jackson GS, Murray I, Hosszu LLP, Gibbs N, Waltho JP, Clarke AR, Collinge J (2001) Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci USA 98:8531–8535

    Article  CAS  PubMed  Google Scholar 

  • Kramer ML, Kratzin HD, Schmidt B, Römer A, Windl O, Liemann S, Hornemann S, Kretzschmar H (2001) Prion protein binds copper within the physiological concentration range. J Biol Chem 276:16711–16719

    Article  CAS  PubMed  Google Scholar 

  • Lee PA, Beni G (1977) New method for the calculation of atomic phase shifts: application to extended X-ray absorption fine structure (EXAFS) in molecules and crystals. Phys Rev B 15:2862–2883

    Article  CAS  Google Scholar 

  • Lehmann S (2002) Metal ions and prion diseases. Curr Opin Chem Biol 6:187–192

    Article  CAS  PubMed  Google Scholar 

  • Luczkowski M, Kozlowski H, Stawikowski M, Rolka K, Gagelli E, Valensin D, Valensin G (2002) Is the monomeric prion ocatopeptide repeat PHGGWGQ a specific ligand for Cu2+ ions? J Chem Soc Dalton Trans 2269–2274

  • MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck J, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher I, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera JY, Karplus DM (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem 102:3586–3616

    Article  CAS  Google Scholar 

  • Meneghini C, Morante S (1998) The active site structure of tetanus neurotoxin resolved by multiple scattering analysis in x-ray absorption spectroscopy. Biophys J 75:1953–1963

    CAS  PubMed  Google Scholar 

  • Miura T, Hori-i A, Takeuchi H (1996) Metal-dependent alpha-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett 396:248–252

    Article  CAS  PubMed  Google Scholar 

  • Miura T, Hori-i A, Mototani H, Takeuchi H (1999) Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and Its pH dependence. Biochemistry 38:11560–11569

    Article  CAS  PubMed  Google Scholar 

  • Morante S, González-Iglesias R, Potrich C, Meneghini C, Meyer-Klaucke W, Menestrina G, Gasset M (2003) Inter- and intra-octarepeat Cu(II) site geometries in the prion protein: implications in Cu(II) binding cooperativity and Cu(II)-mediated assemblies. J Biol Chem 279:11753–11759

    Article  PubMed  Google Scholar 

  • Nolting HF, Hermes C (1992) Documentation for the EMBL EXAFS data analysis and evaluation program package, EXPROG, release 1.0. EMBL, Hamburg, Germany

  • Pardi A, Billeter M, Wüthrich K (1984) Calibration of the angular dependence of the amide proton-C. J Mol Biol 180:741–751

    CAS  PubMed  Google Scholar 

  • Peisach J, Blumberg WE (1974) Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch Biochem Biophys 165:691–708

    CAS  PubMed  Google Scholar 

  • Pettifer RF, Hermes C (1985) Absolute energy calibration of X-ray radiation from synchrotron sources. J Appl Crystallogr 18:404–412

    Article  CAS  Google Scholar 

  • Rehr JJ, Albers RC (1990) Scattering-matrix formulation of curved-wave multiple-scattering theory: application to x-ray-absorption fine structure. Phys Rev B 41:8139–8149

    Article  Google Scholar 

  • Renner C, Fiori S, Fiorino F, Deluca D, Mentler M, Grantner K, Parak FG, Kretschmar HA, Moroder L (2004) Micellar environments induce structuring of the N-terminal tail of the prion protein. Biopolymers 73:421–433

    Article  CAS  PubMed  Google Scholar 

  • Riek R, Hornemann S, Wider G, Glockshuber R, Wüthrich K (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett 413:282–288

    Article  CAS  PubMed  Google Scholar 

  • Sayers DE, Stern EA, Lytle FW (1971) New technique for investigating noncrystalline structures: Fourier analysis of the EXAFS. Phys Rev Lett 27:1204–1207

    Article  CAS  Google Scholar 

  • Steiner RA, Meyer-Klaucke W, Dijkstra BW (2002) Functional analysis of the copper-dependent quercetin 2,3-dioxygenase. 2. X-ray absorption studies of native enzyme and anaerobic complexes with the substrates quercetin and myricetin. Biochemistry 41:7963–7968

    Article  CAS  PubMed  Google Scholar 

  • Stöckel J, Safar J, Wallace AC, Cohen FE, Prusiner SB (1998) Prion protein selectively binds copper(II) ions. Biochemistry 37:7185–7193

    Article  PubMed  Google Scholar 

  • Van Doorslaer S, Cereghetti GM, Glockshuber R, Schweiger A (2001) Unraveling the Cu2+ binding sites in the C-terminal domain of the murine prion protein: a pulse EPR and ENDOR study. J Phys Chem B 105:1631–1639

    Article  Google Scholar 

  • Viles JH, Cohen FE, Prusiner SB, Goodin DB, Wright PE (1999) Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci USA 96:2042–2047

    Article  CAS  PubMed  Google Scholar 

  • Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA (2000) Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Protein Sci 9:332–343

    CAS  PubMed  Google Scholar 

  • Wüthrich K (2003) NMR studies of structure and function of biological macromolecules. Biosci Rep 23:119–153

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bayerischer Forschungsverbund Prionen and the Bundesministerium für Bildung und Forschung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz G. Parak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mentler, M., Weiss, A., Grantner, K. et al. A new method to determine the structure of the metal environment in metalloproteins: investigation of the prion protein octapeptide repeat Cu2+ complex. Eur Biophys J 34, 97–112 (2005). https://doi.org/10.1007/s00249-004-0434-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0434-z

Keywords

Navigation