Skip to main content
Log in

Protein dynamics in solution and powder measured by incoherent elastic neutron scattering: the influence of Q-range and energy resolution

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Incoherent elastic neutron scattering (IENS) has been widely used to measure intramolecular atomic mean square displacements (MSDs) of proteins in powder and in solution. The instrumental energy resolution and the wave vector transfer (Q-range) determine, respectively, the time and length scales of observable motions. In order to investigate contributions of diffusive motions to MSDs measured by this method, we calculated the elastic intensity for several simple scattering functions. We showed that continuous translational diffusion contributes to MSDs in a Q-range where the energy width of the scattering function is of the order of the instrumental energy resolution. We discuss the choice of instruments adapted to focus on intramolecular motions in the presence of solvent or global macromolecular diffusion. The concepts developed are applied to interpret experimental data from H2O- and D2O-hydrated proteins. Finally, analogies between the Gaussian approximation in IENS and the Guinier approximation in small-angle scattering are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Becker T, Smith J (2003) Energy resolution and dynamical heterogeneity effects on elastic incoherent neutron scattering from molecular systems. Phys Rev E 67:021904 1–8

    Article  Google Scholar 

  • Bée M (1988) Quasielastic neutron scattering. Hilger, Bristol, UK

  • Bellissent-Funel MC (2004) Status of experiments probing the dynamics of water in confinement. Eur Phys J E 12:83–92

    Google Scholar 

  • Bellissent-Funel MC, Zanotti JM, Chen SH (1996) Slow dynamics of water molecules on the surface of a globular protein. Faraday Discuss 103:281–294

    Article  CAS  Google Scholar 

  • Bon C, Dianoux AJ, Ferrand M, Lehmann MS (2002) A model for water motion in crystals of lysozyme based on an incoherent quasielastic neutron scattering study. Biophys J 83:1578–1588

    CAS  PubMed  Google Scholar 

  • Boutin H, Yip S (1968) Molecular spectroscopy with neutrons. MIT Press, Cambridge, Mass

  • Creighton T (1993) Proteins: structures and molecular properties. Freeman, New York

  • Dellerue S, Petrescu A-J, Smith JC, Bellissent-Funel M-C (2001) Radially softening diffusive motions in a globular protein. Biophys J 81:1666–1676

    CAS  PubMed  Google Scholar 

  • Doster W, Cusack S (1990) Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering. Biophys J 58:243–251

    PubMed  Google Scholar 

  • Doster W, Cusack S, Petry W (1989) Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337:754–756

    Article  CAS  PubMed  Google Scholar 

  • Doster W, Diehl M, Gebhardt R, Lechner RE, Pieper J (2003) TOF-elastic resolution spectroscopy: time domain analysis of weakly scattering (biological) samples. Chem Phys 292:487–494

    Article  CAS  Google Scholar 

  • Dwyer JD, Bloomfield VA (1993) Brownian dynamics simulations of probe and self-diffusion in concentrated protein and DNA solutions. Biophys J 65:1810–1816

    CAS  PubMed  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11:114–119

    Article  CAS  PubMed  Google Scholar 

  • Ferrand M, Dianoux J, Petry W, Zaccai G (1993) Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci USA 90:9668–9672

    CAS  PubMed  Google Scholar 

  • Fitter J, Lechner RE, Büldt G, Dencher NA (1996) Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes. Proc Natl Acad Sci USA 93:7600–7605

    Article  CAS  PubMed  Google Scholar 

  • Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280:558–563

    CAS  PubMed  Google Scholar 

  • Frick B, Farago B (2002) Neutron spectroscopy by time-of-flight, backscattering and spin-echo techniques. In: Pike E, Sabatier P (eds) Scattering. Scattering and inverse scattering in pure and applied science. Academic Press, London, pp 1209–1241

  • Gabel F, Bicout D, Lehnert U, Tehei M, Weik M, Zaccai G (2002) Protein dynamics studied by neutron scattering. Q Rev Biophys 35:327–367

    Article  CAS  PubMed  Google Scholar 

  • Gabel F, Weik M, Doctor BP, Saxena A, Fournier D, Brochier L, Renault F, Masson P, Silman I, Zaccai G (2004) The influence of solvent composition on global dynamics of human butyrylcholinesterase powders: a neutron scattering study. Biophys J 86:3152–3165

    CAS  PubMed  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (1965) Table of integrals, series, and products. Academic Press, New York

  • Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley, New York

  • Kneller GR, Smith JC (1994) Liquid-like side-chain dynamics in myoglobin. J Mol Biol 242:181–185

    Article  CAS  PubMed  Google Scholar 

  • Kollmar A, Alefeld B (1976) In: Moon RM (ed) Proceedings of the conference on neutron scattering, Gatlinburg, Tenn., USA. Natl. Techn. Info. Service, US Dept. of Commerce, Washington, p 330

  • Lipowsky R, Sackmann E (1995) Handbook of biological physics, vol 1A. Structure and dynamics of membranes. From cells to vesicles. Elsevier, Amsterdam

  • Paciaroni A, Cinelli S, Onori G (2002) Effect of the environment on the protein dynamical transition: a neutron scattering study. Biophys J 83:1157–1164

    CAS  PubMed  Google Scholar 

  • Pérez J, Zanotti JM, Durand D (1999) Evolution of the internal dynamics of two globular proteins from dry powder to solution. Biophys J 77:454–469

    PubMed  Google Scholar 

  • Réat V, Zaccai G, Ferrand M, Pfister C (1997) Functional dynamics in purple membranes. In: Cusack S, Büttner H, Ferrand M, Langan P, Timmins P (eds) Biological macromolecular dynamics. Adenine Press, Schenectady, pp 117–122

  • Réat V, Patzelt H, Pfister C, Ferrand M, Oesterhelt D, Zaccai G (1998) Dynamics of different functional parts of bacteriorhodopsin: H-2H labelling and neutron scattering. Proc Natl Acad Sci USA 95:4970–4975

    Article  PubMed  Google Scholar 

  • Sears VF (1984) Thermal neutron scattering lengths and cross sections for condensed-matter research. Chalk River Nuclear Laboratories. Chalk River, Canada

  • Settles M, Doster W (1996) Anomalous diffusion of adsorbed water: a neutron scattering study of hydrated myoglobin. Faraday Discuss 103:269–279

    Article  CAS  Google Scholar 

  • Smith J (1991) Protein dynamics: comparison of simulations with inelastic neutron scattering experiments. Q Rev Biophys 24:227–291

    CAS  PubMed  Google Scholar 

  • Tehei M, Madern D, Pfister C, Zaccai G (2001) Fast dynamics of halophilic malate dehydrogenase and bovine serum albumin measured by neutron scattering under various solvent conditions influencing protein stability. Proc Natl Acad Sci USA 98:14356–14361

    Article  CAS  PubMed  Google Scholar 

  • Tehei M, Franzetti B, Madern D, Ginzburg M, Ginzburg BZ, Giudici-Orticoni MT, Bruschi M, Zaccai G (2004) Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep 5:66–70

    Google Scholar 

  • Teixeira J, Bellissent-Funel M-C, Chen SH, Dianoux J (1985) Experimental determination of the nature of diffusive motions of water molecules at low temperatures. Phys Rev A 31:1913–1917

    Article  CAS  PubMed  Google Scholar 

  • Van Hove L (1954) Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys Rev 95:249–259

    Article  Google Scholar 

  • Vineyard GH (1958) Scattering of slow neutrons by a liquid. Phys Rev 110:999–1010

    Article  CAS  Google Scholar 

  • Volino F, Dianoux J (1980) Neutron incoherent scattering function for diffusion in a potential of spherical symmetry: general information and application to diffusion inside a sphere. J Mol Phys 41:271–279

    CAS  Google Scholar 

  • Volino F, Dianoux AJ, Lechner RE, Hervet H (1975) End chain motion in the solid phase of TTBA. J Phys T36 Suppl Colloq C1–C3, C1 83–88

  • Weast RC (ed) (1975) Handbook of chemistry and physics. CRC Press, Cleveland, Ohio

Download references

Acknowledgements

The author wishes to thank Dr. Giuseppe Zaccai and Prof. Marc Bée for their critical reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Gabel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabel, F. Protein dynamics in solution and powder measured by incoherent elastic neutron scattering: the influence of Q-range and energy resolution. Eur Biophys J 34, 1–12 (2005). https://doi.org/10.1007/s00249-004-0433-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0433-0

Keywords

Navigation