Skip to main content
Log in

Dual-channel photobleaching FRET microscopy for improved resolution of protein association states in living cells

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Fluorescence resonance energy transfer (FRET) from a donor-labelled molecule to an acceptor-labelled molecule is a useful, proximity-based fluorescence tool to discriminate molecular states on the surface and in the interior of cells. Most microscope-based determinations of FRET yield only a single value, the interpretation of which is necessarily model-dependent. In this paper we demonstrate two new measurements of FRET heterogeneity using selective donor photobleaching in combination with synchronous donor/acceptor detection based on either (1) full kinetic analysis of donor-detected and acceptor-detected donor photobleaching or (2) a simple time-based ratiometric approach. We apply the new methods to study the cell surface distribution of concanavalin A yielding estimates of FRET and non-FRET population distributions, as well as FRET efficiencies within the FRET populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2 a
Fig. 3 a
Fig. 4 a

Similar content being viewed by others

References

  • Bastiaens PIH, Jovin TM (1996) Microscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labeled protein kinase C βI. Proc Natl Acad Sci USA 93:8407–8412

    Article  CAS  PubMed  Google Scholar 

  • Bastiaens PIH, Majoul IV, Verveer PJ, Soling HD, Jovin TM (1996) Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J 15:4246–4253

    CAS  PubMed  Google Scholar 

  • Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010

    CAS  PubMed  Google Scholar 

  • Chan SS, Arndt-Jovin D, Jovin TM (1979) Proximity of lectin receptors on the cell surface measured by fluorescence energy transfer in a flow system. J Histochem Cytochem 27:56–64

    CAS  PubMed  Google Scholar 

  • Clegg RM, Murchie AI, Zechel A, Lilley DM (1993) Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc Natl Acad Sci USA 90:2994–2998

    CAS  PubMed  Google Scholar 

  • Cohen-Kashi M, Moshikov S, Zurgil N, Deutsch M (2002) Fluorescence resonance energy transfers measurements on cell surfaces via fluorescence polarization. Biophys J 83:1395–1402

    CAS  PubMed  Google Scholar 

  • dos Remedios CG, Moens PD (1995) Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins: dispelling the problem of the unknown orientation factor. J Struct Biol 115:175–185

    Article  PubMed  Google Scholar 

  • Feller M, Richardson C, Behnke WD, Gruenstein E (1977) High and low affinity binding sites for concanavalin A on normal human fibroblasts in vitro. Biochem Biophys Res Commun 76(4):1027–1035

    CAS  PubMed  Google Scholar 

  • Fernandez SM, Berlin RD (1976) Cell surface distribution of lectin receptors determined by resonance energy transfer. Nature 264:411–415

    CAS  PubMed  Google Scholar 

  • Gadella TW Jr, Jovin TM (1995) Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy: a stereochemical model for tyrosine kinase receptor activation. J Cell Biol 129:1543–1558

    Article  CAS  PubMed  Google Scholar 

  • Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702–2713

    CAS  PubMed  Google Scholar 

  • Hirschfeld T (1976) Quantum efficiency independence of the time-integrated emission from a fluorescent molecule. Appl Opt 15:3135–3139

    CAS  Google Scholar 

  • Hoppe A, Christensen K, Swanson JA (2002) Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys J 83:3652–3664

    CAS  PubMed  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  CAS  PubMed  Google Scholar 

  • Jovin TM (2003) Quantum dots finally come of age. Nat Biotechnol 21:32–33

    Article  CAS  PubMed  Google Scholar 

  • Jovin TM, Arndt-Jovin DJ (1989) FRET microscopy: digital imaging of fluorescence resonance energy transfer. Application in cell biology. In: Kohen E, Hirschberg JG, Ploem JS (eds) Cell structure and function by microspectrofluorometry. Academic Press, London, pp 99–117

  • Kenworthy AK, Edidin M (1998) Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 Å using imaging fluorescence resonance energy transfer. J Cell Biol 142:69–84

    Article  CAS  PubMed  Google Scholar 

  • Klostermeier D, Millar DP (2001–2002) Time-resolved fluorescence resonance energy transfer: a versatile tool for the analysis of nucleic acids. Biopolymers 61:159–179

    Article  CAS  PubMed  Google Scholar 

  • Kubitscheck U, Schweitzer-Steiner R, Arndt-Jovin DJ, Jovin TM, Pecht I (1993) Distribution of type I Fcε-receptors on the surface of mast cells probed by fluorescence resonance energy transfer. Biophys J 64:110–120

    CAS  PubMed  Google Scholar 

  • Mekler VM, Averbakh AZ, Sudarikov A, Kharitonova OV (1997) Fluorescence energy transfer-sensitized photobleaching of a fluorescent label as a tool to study donor-acceptor distance distributions and dynamics in protein assemblies: studies of a complex of biotinylated IrM with streptavidin and aggregates of concanavalin A. J Photochem Photobiol B Biol 40:278–287

    Article  CAS  Google Scholar 

  • Millar DP (2000) Time-resolved fluorescence methods for analysis of DNA-protein interactions. Methods Enzymol 323:442–459

    Article  CAS  PubMed  Google Scholar 

  • Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730–734

    Article  CAS  PubMed  Google Scholar 

  • St. Pierre PR, Petersen NO (1990) Relative ligand binding to small or large aggregates measured by scanning correlation spectroscopy. Biophys J 58:503–511

    PubMed  Google Scholar 

  • Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58:719–726

    CAS  PubMed  Google Scholar 

  • Sykes JA, Moore EB (1959) A new chamber for tissue culture. Proc Soc Exp Biol Med 100:121–127

    PubMed  Google Scholar 

  • Szollosi J, Tron S, Damjanovich S, Helliwell SH, Arndt-Jovin D, Jovin TM (1984) Fluorescence energy transfer measurements on cell surfaces: a critical comparison of steady-state fluorometric and flow cytometric methods. Cytometry 5:210–216

    CAS  PubMed  Google Scholar 

  • Szollosi J, Nagy P, Sebestyen Z, Damjanovich S, Park JW, Matyus L (2002) Applications of fluorescence resonance energy transfer for mapping biological membranes. Rev Mol Biotechnol 82:251–266

    Article  CAS  Google Scholar 

  • Wallach DF, Schmidt-Ullrich R (1976) Low- and high-affinity concanavalin A binding to thymocyte plasma membrane vesicles. J Cell Physiol 89(4):771–774

    CAS  PubMed  Google Scholar 

  • Whitehead RH, Macrae FA, St John DJ, Ma J (1985) A colon cancer cell line (LIM1215) derived from a patient with inherited nonpolyposis colorectal cancer. J Natl Cancer Inst 74:759–765

    CAS  PubMed  Google Scholar 

  • Young RM, Arnette JK, Roess DA, BG Barisas (1994) Quantitation of fluorescence resonance energy transfer between cell surface proteins via fluorescence donor photobleaching kinetics. Biophys J 67:881–888

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. A. Clayton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clayton, A.H.A., Klonis, N., Cody, S.H. et al. Dual-channel photobleaching FRET microscopy for improved resolution of protein association states in living cells. Eur Biophys J 34, 82–90 (2005). https://doi.org/10.1007/s00249-004-0427-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0427-y

Keywords

Navigation