Skip to main content
Log in

Investigation into the interaction of the bacterial protease OmpT with outer membrane lipids and biological activity of OmpT:lipopolysaccharide complexes

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Outer-membrane proteases T (OmpT) are important defence molecules of Gram-negative bacteria such as Escherichia coli found in particular in clinical isolates. We studied the interaction of OmpT with the membrane-forming lipids phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) from the inner leaflet and lipopolysaccharide (LPS) from the outer leaflet of the outer membrane. These investigations comprise functional aspects of the protein–lipid interaction mimicking the outer-membrane system as well as the bioactivity of LPS:OmpT complexes in the infected host after release from the bacterial surface. The molecular interaction of the lipids PE, PG, and LPS with OmpT was investigated by analysing molecular groups in the lipids originating from the apolar region (methylene groups), the interface region (ester), and the polar region (phosphates), and by analysing the acyl-chain melting-phase behaviour of the lipids. The activity of OmpT and LPS:OmpT complexes was investigated in biological test systems (human mononuclear cells and Limulus amoebocyte lysate assay) and with phospholipid model membranes. The results show a strong influence of OmpT on the mobility of the lipids leading to a considerable fluidization of the acyl chains of the phospholipids as well as LPS, and a rigidification of the phospholipid, but not LPS head groups. From this, a dominant role of the protein on the function of the outer membrane can be deduced. OmpT released from the outer membrane still contains slight contaminations of LPS, but its strong cytokine-inducing ability in mononuclear cells, which does not depend on the Toll-like receptors 2 and 4, indicates an LPS-independent mechanism of cell activation. This might be of general importance for infections induced by Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alurkar V, Kamat R (1997) Immunomodulatory properties of porins of some members of the family Enterobacteriaceae. Infect Immun 65:2382–2388

    CAS  PubMed  Google Scholar 

  • Arrondo JL, Goni FM (1999) Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol 72:367–405

    Article  CAS  PubMed  Google Scholar 

  • Beutler B (2000) Endotoxin, Toll-like receptor 4, and the afferent limb of innate immunity. Curr Opin Microbiol 3:23–28

    Article  CAS  PubMed  Google Scholar 

  • Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP, Wagner H, Kirschning CJ, ter Meulen V, Schneider-Schaulies S (2002) Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J Virol 76:8729–8736

    Article  CAS  PubMed  Google Scholar 

  • Blume A, Garidel P (1999) Lipid model membranes and biomembranes. In: Gallagher PK, Kemp RB (eds) The handbook of thermal analysis and calorimetry. Elsevier, Amsterdam, pp 109–173

  • Brandenburg K (1993) Fourier transform infrared spectroscopy characterization of the lamellar and nonlamellar structures of free lipid A and Re lipopolysaccharides from Salmonella minnesota and Escherichia coli. Biophys J 64:1215–1231

    CAS  PubMed  Google Scholar 

  • Brandenburg K, Blume A (1987) Investigations into the thermotropic phase behaviour of natural membranes extracted from Gram-negative bacteria and artificial membrane systems made from lipopolysaccharides and free lipid A. Thermochim Acta 119:127–142

    Article  CAS  Google Scholar 

  • Brandenburg K, Koch MHJ, Seydel U (1998) Biophysical characterisation of lysozyme binding to LPS Re and lipid A. Eur J Biochem 258:686–695

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg K, Jürgens G, Müller M, Fukuoka S, Koch MHJ (2001) Biophysical characterization of lipopolysaccharide and lipid A inactivation by lactoferrin. Biol Chem 382:1215–1225

    CAS  PubMed  Google Scholar 

  • Brandenburg K, Jürgens G, Andrä J, Lindner B, Koch MHJ, Blume A, Garidel P (2002) Biophysical characterization of the interaction of high-density lipoprotein (HDL) with endotoxins. Eur J Biochem 269:5972–5981

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg K, Moriyon I, Arraiza MD, Lehwark-Yvetot G, Koch MHJ, Seydel U (2002) Biophysical investigations into the interaction of lipopolysaccharide with polymyxins. Thermochim Acta 382:189–198

    Article  CAS  Google Scholar 

  • Buschner S. (1999) Bestimmung der kritischen Aggregatkonzentration von Lipiden: Implikationen für die biologische Wirksamkeit von Endotoxinen. PhD Thesis, Universität Kiel

    Google Scholar 

  • Dekker N, Cox RC, Kramer RA, Egmond MR (2001) Substrate specificity of the integral membrane protease OmpT determined by spatially addressed peptide libraries. Biochemistry 40:1694–1701

    Article  CAS  PubMed  Google Scholar 

  • Delude RL, Yoshimura A, Ingalls RR, Golenbock DT (1998) Construction of a lipopolysaccharide receptor cell line and its use in identifying mutants defective in endotoxin, but not TNFα, signal transduction. J Immunol 161:3001–3009

    CAS  PubMed  Google Scholar 

  • Friberger P, Sörskog L, Nilsson K, Knös M (1987) The use of a quantitative assay in endotoxin testing. In: Watson SW, Levin J, Novitzky TJ (eds) Detection of bacterial endotoxin with the limulus amebocyte lysate test. Alan Liss, New York, pp 149–169

  • Fringeli UP, Günthard HH (1981) Infrared membrane spectroscopy. In: Grell E (ed) Membrane spectroscopy. Springer, Berlin New York, pp 270–332

  • Galanos C, Lüderitz O, Westphal O (1969) A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9:245–249

    CAS  PubMed  Google Scholar 

  • Galdiero F, Cipollardo de L’Ero G, Benedetto N, Galdiero M, Tufano MA (1993) Release of cytokines induced by Salmonella typhimurium porins. Infect Immun 61:155–161

    CAS  PubMed  Google Scholar 

  • Galdiero M, D’Isanto M, Vitiello M, Finamore E, Peluso L (2001) Porins from Salmonella enterica serovar Typhimurium induce TNF-alpha, IL-6 and IL-8 release by CD14-independent and CD11a/CD18-dependent mechanisms. Microbiology 147:2697–2704

    CAS  PubMed  Google Scholar 

  • Galdiero M, Vitiello M, Sanzari E, D’Isanto M, Tortora A, Longanella A, Galdiero S (2002) Porins from Salmonella enterica Serovar Typhimurium activate the transcription factors activating protein 1 and NF-kappaB through the Raf-1 mitogen activated protein kinase cascade. Infect Immun 70:558–568

    Article  CAS  PubMed  Google Scholar 

  • Gallati H (1982) Interferon: Wesentlich vereinfachte, enzym-immunologische Bestimmung mit zwei monoklonalen Antikörpern. J Clin Chem Clin Biochem 20:907–914

    CAS  PubMed  Google Scholar 

  • Garidel P, Blume A, Hübner W (2000) A Fourier transform infrared spectroscopic study of the interaction of alkaline earth cations with the negatively charged phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol. Biochim Biophys Acta 1466:245–259

    Article  CAS  PubMed  Google Scholar 

  • Gutsmann T, Schromm AB, Koch MHJ, Kusumoto S, Fukase K, Oikawa M, Seydel U, Brandenburg K (2000) Lipopolysaccharide-binding protein-mediated interaction of lipid A from different origin with phospholipid membranes. Phys Chem Chem Phys 2:4521–4528

    Article  CAS  Google Scholar 

  • Heine H, Kirschning CJ, Lien E, Monks BG, Rothe M, Golenbock DT (1999) Cutting edge: cells that carry a null allele for Toll-like receptor 2 are capable of responding to endotoxin. J Immunol 162:6971–6975

    CAS  PubMed  Google Scholar 

  • Jürgens G, Müller M, Koch MH J, Brandenburg K (2001) Interaction of hemoglobin with enterobacterial lipopolysaccharide and lipid A. Physicochemical characterization and biological activity. Eur J Biochem 268:4233–4242

    Article  PubMed  Google Scholar 

  • Jürgens G, Müller M, Garidel P, Koch MHJ, Nakakubo H, Blume A, Brandenburg K (2002) Investigation into the interaction of recombinant human serum albumin with Re-lipopolysaccharide and lipid A. J Endotoxin Res 8:115–126

    Article  PubMed  Google Scholar 

  • Kauppinen JK, Moffat DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectrosc 35:271–276

    CAS  Google Scholar 

  • Kramer RA, Zandwijken D, Egmond MR, Dekker N (2000) In vitro folding, purification and characterization of Escherichia coli outer membrane protease OmpT. Eur J Biochem 267:885–893

    Article  CAS  PubMed  Google Scholar 

  • Kramer RA, Vandeputte-Rutten L, de Roon GJ, Gros P, Dekker N, Egmond MR (2001) Identification of essential acidic residues of outer membrane protease OmpT supports a novel active site. FEBS Lett 505:426–430

    Article  CAS  PubMed  Google Scholar 

  • Kramer RA, Brandenburg K, Vandeputte-Rutten L, Werkhoven M, Gros P, Dekker N, Egmond MR (2002) Lipopolysaccharide regions involved in the activation of Escherichia coli outer membrane protease OmpT. Eur J Biochem 269:1746–1752

    Article  CAS  PubMed  Google Scholar 

  • Kröner EE, Peskar BA, Fischer H, Ferber E (1981) Control of arachidonic acid accumulation in bone marrow-derived macrophages by acyltransferases. J Biol Chem 256:3690–3697

    PubMed  Google Scholar 

  • Labischinski H, Barnickel G, Bradaczek H, Naumann D, Rietschel ET, Giesbrecht P (1985) High state of order of isolated bacterial lipopolysaccharide and its possible contribution to the permeation barrier of the outer membrane. J Bacteriol 162:9-20

    CAS  PubMed  Google Scholar 

  • Lindner B, Seydel U (1984) Laser Mikrosonden Massenanalyse (LAMMA) in der Mikrobiologie. Forum Mikrobiol 7:332–338

    CAS  Google Scholar 

  • Massari P, Henneke P, Ho Y, Latz E, Golenbock DT, Wetzler LM (2002) Cutting edge: immune stimulation by neisserial porins is Toll-like receptor 2 and MyD88 dependent. J Immunol 168:1533–1537

    CAS  PubMed  Google Scholar 

  • Morr M, Takeuchi O, Akira S, Simon MM, Mühlradt PF (2002) Differential recognition of structural details of bacterial lipopeptides by Toll-like receptors. Eur J Immunol 32:3337–3347

    Article  CAS  PubMed  Google Scholar 

  • Nikaido H (1993) Transport across the bacterial outer membrane. J Bioenerg Biomembr 25:581–589

    CAS  PubMed  Google Scholar 

  • Nikaido H, Vaara,M (1985) Molecular basis of bacterial outer membrane permeability. Microbial Rev 49:1–32

    CAS  Google Scholar 

  • Schromm AB, Brandenburg K, Rietschel ET, Flad H-D, Carroll SF, Seydel U (1996) Lipopolysaccharide binding protein (LBP) mediates CD14-independent intercalation of lipopolysaccharide into phospholipid membranes. FEBS Lett 399:267–271

    Article  CAS  PubMed  Google Scholar 

  • Seydel U, Ulmer AJ, Uhlig S, Rietschel ET (1999) Lipopolysaccharide, a membrane-forming and inflammation-inducing bacterial macromolecule. In: Zimmer G (ed) Membrane structure in disease and drug therapy. Marcel Dekker, New York, pp 217–254

  • Seydel U, Oikawa M, Fukase K, Kusumoto S, Brandenburg K (2000) Intrinsic conformation of lipid A is responsible for agonistic and antagonistic activity. Eur J Biochem 267:3032–3039

    CAS  PubMed  Google Scholar 

  • Snyder DS, McIntosh TJ (2000) The lipopolysaccharide barrier: correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics. Biochemistry 39:11777–11787

    Article  CAS  PubMed  Google Scholar 

  • Stumpe S, Schmid R, Stephens DL, Georgiou G, Bakker EP (1998) Identification of OmpT as the protease that hydrolyses the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J Bacteriol 180:4002–4006

    CAS  PubMed  Google Scholar 

  • Sugimura K, Nishihara T (1988) Purification, characterization, and primary structure of Escherichia coli protease VII with specificity for paired basic residues: identity of protease V11 and OmpT. J Bacteriol 170:5625–5632

    CAS  PubMed  Google Scholar 

  • Urbanova M, Dukor RK, Pancoska P, Gupta VP, Keiderling TA (1991) Comparison of α-lactalbumin and lysozyme using vibrational circular dichroism. Evidence for a difference in crystal and solution structures. Biochemistry 30:10479–10485

    CAS  PubMed  Google Scholar 

  • Vandeputte-Rutten L, Kramer RA, Kroon J, Dekker N, Egmond MR, Gros P (2001) Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. EMBO J 20:5033–5039

    Article  CAS  PubMed  Google Scholar 

  • Webb RM, Lundrigan MD (1996) OmpT in Escherichia coli correlates with severity of disease in urinary tract infection. Med Microbiol Lett 5:8–14

    CAS  Google Scholar 

  • Wiese A, Schröder G, Brandenburg K, Hirsch A, Welte W, Seydel U (1994) Influence of the lipid matrix on incorporation and function of LPS--free porin from Paracoccus denitrificans. Biochim Biophys Acta 1190:231–242

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163:1-5

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to G. von Busse and C. Hamann for performing the IR spectroscopic and fluorescence spectroscopic measurements. The expert help of B. Fölting for performing the DSC and U. Diemer, the LAL measurements, is kindly acknowledged. This work was financially supported by the Commission of the European Communities, specific RTD programme Quality of Life and Management of Living Resources, QLK-CT-2002-01001, “Antimicrobial endotoxin neutralizing peptides to combat infectious diseases”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Brandenburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandenburg, K., Garidel, P., Schromm, A.B. et al. Investigation into the interaction of the bacterial protease OmpT with outer membrane lipids and biological activity of OmpT:lipopolysaccharide complexes. Eur Biophys J 34, 28–41 (2005). https://doi.org/10.1007/s00249-004-0422-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0422-3

Keywords

Navigation