Skip to main content

Advertisement

Log in

Location and orientation of Triclosan in phospholipid model membranes

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Triclosan is a hydrophobic antibacterial agent used in dermatological preparations and oral hygiene products. Although the molecular mechanism of action of this molecule has been attributed to inhibition of fatty acid biosynthesis, earlier work in our laboratories strongly suggested that the antibacterial action of Triclosan is mediated at least partly through its membranotropic effects. In order to assess its location in phospholipid membranes, high-resolution magic-angle spinning natural abundance 13C NMR of Triclosan embedded within egg yolk lecithin model membranes has been used to obtain 13C spin–lattice relaxation times for both Triclosan and lecithin carbon atoms in the presence of Gd3+ ions. The results indicate that Triclosan is localized in the upper region of the phospholipid membrane, its hydroxyl group residing in the vicinity of the C=O/C2 carbon atoms of the acyl chain of the phospholipid, and the rest of the Triclosan molecule is probably aligned in a nearly perpendicular orientation with respect to the phospholipid molecule. Intercalation of Triclosan into bacterial cell membranes likely compromises the functional integrity of those membranes, thereby accounting for at least some of this compound’s antibacterial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

COLOC:

correlation by long-range coupling

EYL:

egg yolk lecithin

HETCOR:

heteronuclear chemical-shift correlation

MAS:

magic-angle spinning

MLV:

multilamellar vesicles

References

  • Auger M (2000) Biological membrane structure by solid-state NMR. Curr Issues Mol Biol 2:119–124

    CAS  PubMed  Google Scholar 

  • Bechinger B (2000) Biophysical investigations of membrane perturbations by polypeptides using solid-state NMR spectroscopy. Mol Membr Biol 17:135–142

    Article  CAS  PubMed  Google Scholar 

  • Bernabeu A, Shapiro S, Villalaín J (2002) A MAS-NMR study of the location of (+)-totarol, a diterpenoid bioactive molecule, in phospholipid model membranes. Chem Phys Lipids 119:33–39

    Article  CAS  PubMed  Google Scholar 

  • Bhargava HN, Leonard PA (1996) Triclosan: applications and safety. Am J Infect Control 24:209–218

    PubMed  Google Scholar 

  • Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO (1999) Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110–11114

    PubMed  Google Scholar 

  • Heath RJ, Su N, Murphy CK, Rock CO (2000) The enoyl-[acyl-carrier-protein] reductases FabI and FabL from Bacillus subtilis. J Biol Chem 275:40128–40133

    PubMed  Google Scholar 

  • Ipsen JH, Mouritsen OG, Bloom M (1990) Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order. The effects of cholesterol. Biophys J 57:405–412

    CAS  PubMed  Google Scholar 

  • Jones RD, Jampani HB, Newman JL, Lee AS (2000) Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control 28:184–196

    CAS  PubMed  Google Scholar 

  • Levy CW, Roujeinikova A, Sedelnikova S, Baker PJ, Stuitje AR, Slabas AR, Rice DW, Rafferty JB (1999) Molecular basis of triclosan activity. Nature 398:383–384

    Article  CAS  PubMed  Google Scholar 

  • McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531–532

    PubMed  Google Scholar 

  • Modéer T, Bengtsson A, Rölla G (1996) Triclosan reduces prostaglandin biosynthesis in human gingival fibroblasts challenged with interleukin-1 in vitro. J Clin Periodontol 23:927–933

    PubMed  Google Scholar 

  • Mustafa M, Bakhiet M, Wondimu B, Modéer T (2000) Effect of triclosan on interferon-gamma production and major histocompatibility complex class II expression in human gingival fibroblasts. J Clin Periodontol 27:733–737

    Article  CAS  PubMed  Google Scholar 

  • Nagle JF (1993) Area/lipid of bilayers from NMR. Biophys J 64:1476–1481

    CAS  PubMed  Google Scholar 

  • Nezil FA, Bloom M (1992) Combined influence of cholesterol and synthetic amphiphilic peptides upon bilayer thickness in model membranes. Biophys J 61:1176–1183

    CAS  PubMed  Google Scholar 

  • Oldfield E, Bowers JL, Forbes J (1987) High-resolution proton and carbon-13 NMR of membranes: why sonicate? Biochemistry 26:6919–6923

    CAS  PubMed  Google Scholar 

  • Parikh SL, Xiao G, Tonge PJ (2000) Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry 39:7645–7650

    Article  PubMed  Google Scholar 

  • Qiu X, Janson CA, Court RI, Smyth MG, Payne DJ, Abdel-Meguid SS (1999) Molecular basis for triclosan activity involves a flipping loop in the active site. Protein Sci 8:2529–2532

    CAS  PubMed  Google Scholar 

  • Regös J, Hitz HR (1974) Investigations on the mode of action of Triclosan, a broad spectrum antimicrobial agent. Zentralbl Bakteriol Abt Orig A 226:390–401

    Google Scholar 

  • Regös J, Zak O, Solf R, Vischer WA, Weirich EG (1979) Antimicrobial spectrum of triclosan, a broad-spectrum antimicrobial agent for topical application. II. Comparison with some other antimicrobial agents. Dermatologica 158:72–79

    PubMed  Google Scholar 

  • Roujeinikova A, Levy CW, Rowsell S, Sedelnikova S, Baker PJ, Minshull CA, Mistry A, Colls JG, Camble R, Stuitje AR, Slabas AR, Rafferty JB, Pauptit RA, Viner R, Rice DW (1999) Crystallographic analysis of triclosan bound to enoyl reductase. J Mol Biol 294:527–535

    Article  CAS  PubMed  Google Scholar 

  • Salgado J, Villalaín J, Gómez-Fernández JC (1993) Magic angle spinning 13C-NMR spin-lattice relaxation study of the location and effects of α-tocopherol, ubiquinol-10 and ubiquinone-10 in unsonicated model membranes. Eur J Biophys 22:151–155

    CAS  Google Scholar 

  • Sankaram MB, Thompson TE (1992) Deuterium magnetic resonance study of phase equilibria and membrane thickness in binary phospholipid mixed bilayers. Biochemistry 31:8258–8268

    CAS  PubMed  Google Scholar 

  • Schweizer HP (2001) Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett 202:1–7

    PubMed  Google Scholar 

  • Shapiro S, Guggenheim B (1995) The action of thymol on oral bacteria. Oral Microbiol Immunol 10:241–246

    CAS  PubMed  Google Scholar 

  • Skaare AB, Kjaerheim V, Barkvoll P, Rölla G (1997) Does the nature of the solvent affect the anti-inflammatory capacity of triclosan? An experimental study. J Clin Periodontol 24:124–128

    CAS  PubMed  Google Scholar 

  • Stewart MJ, Parikh S, Xiao G, Tonge PJ, Kisker C (1999) Structural basis and mechanism of enoyl reductase inhibition by triclosan. J Mol Biol 290:859–865

    Article  CAS  PubMed  Google Scholar 

  • Villalaín J (1996) Location of cholesterol in model membranes by magic-angle-sample-spinning NMR. Eur J Biochem 241:586–593

    PubMed  Google Scholar 

  • Villalaín J (1997) Location of the toxic molecule abietic acid in model membranes by MAS-NMR. Biochim Biophys Acta 1328:281–289

    PubMed  Google Scholar 

  • Villalaín J, Mateo CR, Aranda FJ, Shapiro S, Micol V (2001) Membranotropic effects of the antibacterial agent Triclosan. Arch Biochem Biophys 390:128–136

    PubMed  Google Scholar 

  • Zuckerbraun HL, Babich H, May RJ, Sinensky MC (1998) Triclosan: cytotoxicity, mode of action, and induction of apoptosis in human gingival cells in vitro. Eur J Oral Sci 106:628–636

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported partly by grants PM98-0100 and BMC2002-00158 from MCYT, Madrid (to J.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Villalaín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillén, J., Bernabeu, A., Shapiro, S. et al. Location and orientation of Triclosan in phospholipid model membranes. Eur Biophys J 33, 448–453 (2004). https://doi.org/10.1007/s00249-003-0378-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0378-8

Keywords

Navigation