Skip to main content
Log in

Arranging the elements of the potassium channel: the T1 domain occludes the cytoplasmic face of the channel

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The voltage-gated potassium channel is currently one of the few membrane proteins where functional roles have been mapped onto specific segments of sequence. Although high-resolution structures of the transmembrane portions of three bacterial potassium channels, the tetramerization domain and the cytoplasmic “ball” are available, their relative spatial arrangement in mammalian channels remains a matter of ongoing debate. Cryo-electron microscopic images of the six transmembrane voltage-gated Kv channel have been reconstructed at up to 18 Å resolution, revealing that the T1 domain tetramerizes and is suspended below the transmembrane segments. However, the resolution of these images is insufficient to reveal the location of the third piece of the puzzle, the inactivating ball domain. We have used the aberrant interactions observed in a series of chimæric channels to establish that an assembled T1 domain restricts access to the cytoplasmic face of the channel, suggesting that the N-terminal “ball and chain” may be confined in the space between the T1 domain and the transmembrane portion of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–G
Fig. 2A–D
Fig. 3A–D

Similar content being viewed by others

References

  • Aldrich RW (2001) Fifty years of inactivation. Nature 411:643–644

    Article  CAS  PubMed  Google Scholar 

  • Antz C, Geyer M, Fakler B, Schott MK, Guy HR, Frank R, Ruppersberg JP, Kalbitzer HR (1997) NMR structure of inactivation gates from mammalian voltage-dependent potassium channels. Nature 385:272–275

    CAS  PubMed  Google Scholar 

  • Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592

    CAS  PubMed  Google Scholar 

  • Bixby KA, Nanao MH, Shen NV, Kreusch A, Bellamy H, Pfaffinger PJ, Choe S (1999) Zn2+ binding and molecular determinants of tetramerization in voltage gated K+ channels. Nat Struct Biol 6:38–43

    Article  CAS  PubMed  Google Scholar 

  • Chanda B, Tiwari JK, Varshney A, Mathew MK (1999a) Exploring the architecture of potassium channels using chimæras to reveal signal transduction. Biosci Rep 9:301–306

    Article  Google Scholar 

  • Chanda B, Tiwari JK, Varshney A, Mathew MK (1999b) Transplanting the N-terminus from Kv1.4 to Kv1.1 generates an inwardly rectifying K+ channel. Neuroreport 10:237–241

    CAS  PubMed  Google Scholar 

  • Choe S, Kreusch A, Pfaffinger PJ (1999) Towards the three-dimensional structure of voltage-gated potassium channels. Trends Biochem Sci 24:345–349

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    CAS  PubMed  Google Scholar 

  • Gulbis JM, Zhou M, Mann S, MacKinnon R (2000) Structure of the cytoplasmic beta subunit-T1 assembly of voltage- dependent K+ channels. Science 289:123–127

    CAS  PubMed  Google Scholar 

  • Hopkins WF, Allen M, Tempel BL (1999) Interactions of snake dendrotoxins with potassium channels. Methods Enzymol 294:649–661

    CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003a) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003b) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48

    Article  CAS  PubMed  Google Scholar 

  • Kobertz WR, Miller C (1999) K+ channels lacking the ‘tetramerization’ domain: implications for pore structure. Nat Struct Biol 6:1122–1125

    Article  CAS  PubMed  Google Scholar 

  • Kobertz WR, Williams C, Miller C (2000) Hanging gondola structure of the T1 domain in a voltage-gated K+ channel. Biochemistry 39:10347–10352

    Article  CAS  PubMed  Google Scholar 

  • Kreusch K, Pfaffinger PJ, Stevens CF, Choe S (1998) Crystal structure of the tetramerization domain of shaker potassium channel. Nature 392:945–948

    Article  CAS  PubMed  Google Scholar 

  • Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926

    Article  CAS  PubMed  Google Scholar 

  • Latorre R (2003) Structure and function of potassium channels in plants: some inferences about the molecular origin of inward rectification in KAT1 channels. Mol Membr Biol 20:19–25

    Article  CAS  PubMed  Google Scholar 

  • MacKinnon R (1995) Pore loops: an emerging theme in ion channel structure. Neuron 14:889–892

    CAS  PubMed  Google Scholar 

  • Mannikko R, Elinder F, Larsson HP (2002) Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature 419:837–841

    Article  CAS  PubMed  Google Scholar 

  • Miller AG, Aldrich RW (1996) Conversion of a delayed rectifier K+ channel to a voltage-gated inward rectifier K+ channel by three amino acid substitutions. Neuron 16:853–858

    CAS  PubMed  Google Scholar 

  • Minor DL, Lin YF, Mobley BC, Avelar A, Jan YN, Jan LY, Berger JM (2000) The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell 102:657–670

    CAS  PubMed  Google Scholar 

  • Orlova EV, Papakosta M, Booy FP, van Heel M, Dolly JO (2003) Voltage-gated K+ channel from mammalian brain: 3D structure at 18 Å of the complete α4β4 complex. J Mol Biol 326:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Ramaswami M, Gautam M, Kamb A, Rudy B, Tanouye MA, Mathew MK (1990) Human potassium channel genes: molecular cloning and functional expression. Mol Cell Neurosci 1:214–223

    CAS  Google Scholar 

  • Rudy B, Chow A, Lau D, Amarillo Y, Ozaita A, Saganich M, Moreno H, Nadal MS, Hernandez-Pineda R, Hernandez-Cruz A, Erisir A, Leonard C, Vega-Saenz de Miera E (1999) Contributions of Kv3 channels to neuronal excitability. Ann NY Acad Sci 868:304–343

    CAS  PubMed  Google Scholar 

  • Sather WA, Yang J, Tsien RW (1994) Structural basis of ion channel permeation and selectivity. Curr Opin Neurobiol 4:313–323

    Article  CAS  PubMed  Google Scholar 

  • Sesti F, Rajan S, Gonzalez-Colaso R, Nikolaeva N, Goldstein SA (2003) Hyperpolarization moves S4 sensors inward to open MVP, a methanococcal voltage-gated potassium channel. Nat Neurosci 6:353–361

    Article  CAS  PubMed  Google Scholar 

  • Shen NV, Pfafinger PJ (1995) Molecular recognition and assembly sequences involved in the subfamily-specific assembly of voltage-gated K+ channel subunit proteins. Neuron 14:625–633

    CAS  PubMed  Google Scholar 

  • Sigworth FJ (2003) Structural biology: life’s transistors. Nature 423:21–22

    Article  CAS  PubMed  Google Scholar 

  • Smith PL, Baukrowitz T, Yellen G (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379:833–836

    CAS  PubMed  Google Scholar 

  • Sokolova O, Kolmakova-Partensky L, Grigorieff N (2001) Three-dimensional structure of a voltage-gated potassium channel at 2.5 nm resolution. Structure 9:215–220

    Article  CAS  PubMed  Google Scholar 

  • Stephens GJ, Robertson B (1995) Inactivation of the cloned potassium channel mouse Kv1.1 by the human Kv3.4 ‘ball’ peptide and its chemical modification. J Physiol (Lond) 484:1–13

  • Stuhmer W, Ruppersberg JP, Schroter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O (1989) Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J 8:3235–3244

    PubMed  Google Scholar 

  • Tseng-Crank J, Yao JA, Berman MF, Tseng GN (1993) Functional role of the NH2-terminal cytoplasmic domain of a mammalian A- type K+ channel. J Gen Physiol 102:1057–1083

    CAS  PubMed  Google Scholar 

  • Varshney A, Mathew MK (2003a) Inward and outward potassium currents through the same chimera human Kv channel. Eur Biophys J 32:113–121

    PubMed  Google Scholar 

  • Varshney A, Mathew MK (2003b) A tale of two tails: cytosolic termini and K+ channel function. Prog Biophys Mol Biol 83:153–170

    Article  CAS  PubMed  Google Scholar 

  • Varshney A, Kavitha S, Mathew MK (2002) Modulation of voltage sensitivity by N-terminal cytoplasmic residues in human Kv1.2 channels. Eur Biophys J 31:365–372

    CAS  PubMed  Google Scholar 

  • Wissmann R, Baukrowitz T, Kalbacher H, Kalbitzer HR, Ruppersberg JP, Pongs O, Antz C, Fakler B (1999) NMR structure and functional characteristics of the hydrophilic N-terminus of the potassium channel beta-subunit Kvbeta1.1. J Biol Chem 274:35521–35525

    Article  CAS  PubMed  Google Scholar 

  • Wissmann R, Bildl W, Oliver D, Beyermann M, Kalbitzer HR, Bentrop D, Fakler B (2003) Solution structure and function of the ‘tandem-inactivation domain’ of the neuronal A-type potassium channel Kv1.4. J Biol Chem 278:16142–16150

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yu W, Jan YN, Jan LY, Li M (1995) Assembly of voltage-gated potassium channels. Conserved hydrophilic motifs determine subfamily-specific interactions between the alpha- subunits. J Biol Chem 270:24761–24768

    Article  CAS  PubMed  Google Scholar 

  • Yellen G (1998) The moving parts of voltage-gated ion channels. Q Rev Biophys 31:239–295

    CAS  PubMed  Google Scholar 

  • Zagotta WN, Hoshi T, Aldrich RW (1990) Restoration of inactivation in mutants of shaker potassium channels by a peptide derived from ShB. Science 250:568–571

    CAS  PubMed  Google Scholar 

  • Zhou M, Morais-Cabral JH, Mann S, MacKinnon R (2001) Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411:657–661

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.V. acknowledges support from the Kanwal Rekhi Scholarship of the TIFR Endowment Fund. The authors thank Ms. Kavitha S. for her help with experiments. This work was supported by internal funds from NCBS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Mathew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varshney, A., Chanda, B. & Mathew, M.K. Arranging the elements of the potassium channel: the T1 domain occludes the cytoplasmic face of the channel. Eur Biophys J 33, 370–376 (2004). https://doi.org/10.1007/s00249-003-0372-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0372-1

Keywords

Navigation