Skip to main content
Log in

Analysis of peptaibol sequence composition: implications for in vivo synthesis and channel formation

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The sequence entries in the Peptaibol Database were analysed to provide information on compositional features of this unusual family of peptides. The non-standard amino acid α-aminoisobutyric acid represents almost 40% of the residues in all the known sequences. Glutamine is the only significant polar residue in peptaibols, and the position and number of these residues appear to be related to their functional properties as ion channels. Aromatic residues are clustered at the termini, which may contribute to stabilization of the peptide vertically within the bilayer. The peptide chain length is strongly weighted towards the longer members of the family (16–20 residues) and likely to be an important feature in their mode of action as transmembrane permeabilizers. The significant skewing towards even numbers of residues and the bias in pairwise distributions of amino acids have implications for the nature of the in vivo synthesis of these peptides via large non-ribosomal protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Netherlands)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anders R, Ohlenschlager O, Soskic V, Wenschuh H, Heise B, Brown LR (2000) The NMR solution structure of the ion channel peptaibol chrysospermin C bound to dodecylphosphocholine micelles. Eur J Biochem 267:1784–1794

    Article  CAS  PubMed  Google Scholar 

  • Balashova TA, Shenkarev, ZO, Tagaev AA, Ovchinnikova TV, Raap J, Arseniev AS (2000) NMR structure of the channel-former zervamicin IIB in isotropic solvents. FEBS Lett 466:333–336

    Article  CAS  PubMed  Google Scholar 

  • Boheim G (1974) Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol 19:277–303

    CAS  PubMed  Google Scholar 

  • Chugh JK, Wallace BA (2001) Peptaibols: models for ion channels. Biochem Soc Trans 29:565–570

    CAS  PubMed  Google Scholar 

  • Chugh JK, Brückner H, Wallace BA. (2002) Model for a helical bundle channel based on the high resolution crystal structure of trichotoxin_A50E. Biochemistry 41:12934–12941

    Article  CAS  PubMed  Google Scholar 

  • Esposito G, Carver JA, Boyd J, Campbell ID (1987) High resolution 1H NMR study of the solution structure of alamethicin. Biochemistry 26:1043–1050

    CAS  PubMed  Google Scholar 

  • Fox RO Jr, Richards FM (1982) A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5 Å resolution. Nature 300:325–330

    CAS  PubMed  Google Scholar 

  • Franklin JC, Ellena JF, Jayasinghe S, Kelsh LP, Cafiso DS (1994) Structure of micelle-associated alamethicin from 1H NMR: evidence for conformational heterogeneity in a voltage-gated peptide. Biochemistry 33:4036–4045

    CAS  PubMed  Google Scholar 

  • Galbraith TP, Harris R, Driscoll PC, Wallace BA (2003) Solution NMR studies of antiamoebin, a membrane channel-forming polypeptide. Biophys J 84:185–194

    CAS  PubMed  Google Scholar 

  • Karle IL, Flippen-Anderson JL, Agarwalla S, Balaram P (1991) Crystal structure of [leu1]-zervamicin, a membrane ion-channel peptide: implications for gating mechanisms. Proc Natl Acad Sci USA 88:5307–5311

    CAS  PubMed  Google Scholar 

  • Karle IL, Perozzo MA, Mishra VK, Balaram P (1998) Crystal structure of the channel-forming polypeptide antiamoebin in a membrane-mimetic environment. Proc Natl Acad Sci USA 95:5501–5504

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka Y, Iida A, Kambara T, Asami K, Fujita T (1996) Role of 61n (7) in the ion channel forming, properties of the peptaibol trichosporin-B-VIa. Chem Commun 9:1079–1080

    Google Scholar 

  • Prasad BVV, Balaram P (1984) The stereochemistry of peptides containing alpha-aminoisobutyric acid. CRC Crit Rev Biochem 16:307–348

    CAS  PubMed  Google Scholar 

  • Sansom MSP (1993) Alamethicin and related peptaibols: model ion channels. Eur Biophys J 22:105–124

    CAS  PubMed  Google Scholar 

  • Schiffer M, Chang CH, Stevens FJ (1992) The functions of tryptophan residues in membrane proteins. Protein Eng 5:213–214

    CAS  PubMed  Google Scholar 

  • Shenkarev ZO, Balashova TA, Efremov RG, Yakimenko ZA, Ovchinnikova TV, Raap J, Arseniev AS (2002) Spatial structure of zervamicin IIB bound to DPC micelles: implications for voltage-gating. Biophys J 82:762–771

    CAS  PubMed  Google Scholar 

  • Snook CF, Woolley, GA, Oliva G, Pattabhi V, Wood SP, Blundell TL, Wallace BA (1998) The structure and function of antiamoebin I, a proline-rich membrane-active polypeptide. Structure 6:783–792

    CAS  PubMed  Google Scholar 

  • Toniolo C, Benedetti E (1991) The polypeptide 310 helix. Trends Biochem Sci 16:350–353

    Article  CAS  PubMed  Google Scholar 

  • Toniolo C, Peggion E, Crisma M, Formaggio F, Shui XQ, Eggleston DS (1994) Structure determination of racemic trichogin-A-IV using centrosymmetric crystals. Nat Struct Biol 1:908–914

    CAS  PubMed  Google Scholar 

  • Toniolo C, Crisma M, Formaggio F, Peggion C, Monaco V, Goulard C, Rebuffat S, Bodo B (1996) Effect of N-alpha-acyl chain length on the membrane-modifying properties of synthetic analogs of the lipopeptaibol trichogin_GA IV. J Am Chem Soc 118:4952–4958

    Article  CAS  Google Scholar 

  • Wade D, Englund J (2002) Synthetic antibiotic peptides database. Protein Pept Lett 9:53–57

    CAS  PubMed  Google Scholar 

  • Wallace BA (2000) Common features in gramicidin and other ion channels. Bioessays 22:227–234

    CAS  PubMed  Google Scholar 

  • Wallace BA, Janes RW (1999) Tryptophans in membrane proteins: X-ray crystallographic analyses. Adv Exp Med Biol 467:789–799

    CAS  PubMed  Google Scholar 

  • Whitmore L, Chugh JK, Snook CF, Wallace BA (2003) The peptaibol database: a sequence and structure resource. J Pept Sci (in press)

    Google Scholar 

  • Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by BBSRC grant B13586 to B.A.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitmore, L., Wallace, B.A. Analysis of peptaibol sequence composition: implications for in vivo synthesis and channel formation. Eur Biophys J 33, 233–237 (2004). https://doi.org/10.1007/s00249-003-0348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0348-1

Keywords

Navigation