Skip to main content
Log in

Improved 3D continuum calculations of ion flux through membrane channels

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A continuum model, based on the Poisson–Nernst–Planck (PNP) theory, is applied to simulate steady-state ion flux through protein channels. The PNP equations are modified to explicitly account (1) for the desolvation of mobile ions in the membrane pore and (2) for effects related to ion sizes. The proposed algorithm for a three-dimensional self-consistent solution of PNP equations, in which final results are refined by a focusing technique, is shown to be suitable for arbitrary channel geometry and arbitrary protein charge distribution. The role of the pore shape and protein charge distribution in formation of basic electrodiffusion properties, such as channel conductivity and selectivity, as well as concentration distributions of mobile ions in the pore region, are illustrated by simulations on model channels. The influence of the ionic strength in the bulk solution and of the externally applied electric field on channel properties are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A–L.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8A, B.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  • Alexov E, Gunner MR (1997) Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys J 72:2075–2093

    CAS  PubMed  Google Scholar 

  • Allen TW, Kuyucak S, Chung H (2000) Molecular dynamics estimates of ion diffusion in model hydrophobic and KcsA potassium channels. Biophys Chem 86:1–14

    CAS  PubMed  Google Scholar 

  • Boda D, Busath DD, Henderson D, Sokolowski S (2000) Monte Carlo simulations of the mechanism of channel selectivity: the competition between volume exclusion and charge neutrality. J Phys Chem B 104:8903–8910

    Article  CAS  Google Scholar 

  • Boda D, Henderson D, Busath DD (2001) Monte Carlo study of the effect of ion and channel size on the selectivity of a model calcium channel. J Phys Chem B 105:11574–11577

    Article  CAS  Google Scholar 

  • Cardenas AE, Coalson RD, Kurnikova MG (2000) Three-dimensional Poisson-Nernst-Planck theory studies: Influence of membrane electrostatics on gramicidin A channel conductance. Biophys J 79:80–93

    CAS  PubMed  Google Scholar 

  • Chung SH, Hoyles M, Allen T, Kuyucak S (1998) Study of ionic currents across a model membrane channel using Brownian dynamics. Biophys J 75:793–809

    CAS  PubMed  Google Scholar 

  • Corry B, Kuyucak S, Chung SH (2000) Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus Brownian dynamics. Biophys J 78:2364–2381

    CAS  PubMed  Google Scholar 

  • Corry B, Allen TW, Kuyucak S, Chung SH (2001) Mechanisms of permeation and selectivity in calcium channels. Biophys J 80:195–214

    CAS  PubMed  Google Scholar 

  • Dieckmann GR, Lear JD, Zhong QF, Klein ML, DeGrado WF, Sharp KA (1999) Exploration of the structural features defining the conduction properties of a synthetic ion channel. Biophys J 76:618–630

    CAS  PubMed  Google Scholar 

  • Dillet V, van Etten RL, Bashford D (2000) Stabilization of charges and protonation state in the active site of the protein tyrosine phosphatases: a computational study. J Phys Chem B 104:11321–11333

    Article  CAS  Google Scholar 

  • Eisenberg RS (1996) Computing the field in proteins and membranes. J Membr Biol 150:1–25

    CAS  PubMed  Google Scholar 

  • Gillespie D, Eisenberg R (2001) Modified Donnan potentials for ion transport through biological ion channels. Phys Rev E 63:061902-0611-7

    CAS  Google Scholar 

  • Gillespie D, Eisenberg RS (2002) Physical descriptions of experimental selectivity measurements in ion channels. Eur Biophys J 31:454–466

    Article  CAS  PubMed  Google Scholar 

  • Gilson M, Sharp KA, Honig BH (1987) Calculating electrostatic potential of molecules in solution: method and error assessment. J Comput Chem 9:327–335

    Google Scholar 

  • Goulding D, Hansen JP, Melchionna S (2000) Size selectivity of narrow pores. Phys Rev Lett 85:1132–1135

    CAS  PubMed  Google Scholar 

  • Goulding D, Melchionna S, Hansen JP (2001) Entropic selectivity of microporous materials. Phys Chem Chem Phys 3:1644–1654

    CAS  Google Scholar 

  • Graf P, Nitzan A, Kurnikova MG, Coalson RD (2000) A dynamic lattice Monte Carlo model of ion transport in inhomogeneous dielectric environments: method and implementation. J Phys Chem B 104:12324–12338

    CAS  Google Scholar 

  • Gummel HK (1964) A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans Electron Devices ED-11:455–465

    Google Scholar 

  • Gunner MR, Alexov E (2000) A pragmatic approach to structure based calculation of coupled proton and electron transfer in proteins. Biochim Biophys Acta 1458:63–87

    Article  CAS  PubMed  Google Scholar 

  • Hadjidimos A (2000) Successive overrelaxation (SOR) and related methods. J Comp Appl Math 123:177–199

    Article  Google Scholar 

  • Hollerbach U, Chen D, Nonner W, Eisenberg B (1999) Three dimensional Poisson-Nernst-Planck theory of open channels. Biophys J 76:A205

    Google Scholar 

  • Hollerbach U, Chen DP, Busath DD, Eisenberg B (2000) Predicting function from structure using the Poisson-Nernst-Planck equations: sodium current in the gramicidin A channel. Langmuir 16:5509–5514

    Article  CAS  Google Scholar 

  • Jerome JW (1996) Analysis of charge transport: a mathematical study of semiconductor devices. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Karshikoff A (1995) A simple algorithm for calculation of multiple site titration curves. Protein Eng 8:243–248

    CAS  PubMed  Google Scholar 

  • Karshikoff A, Spassov V, Cowan RQ, Ladenstein R, Schirmer T (1994) Electrostatic analysis of two porin channels from E. coli. J Mol Biol 240:372–384

    CAS  PubMed  Google Scholar 

  • Koumanov A, Rüterjans H, Karshikoff A (2002) Continuum electrostatic analysis of irregular ionization and proton allocation in proteins. Proteins 46:85–96

    Article  CAS  PubMed  Google Scholar 

  • Koumanov A, Benach J, Atrian S, Gonzàlez-Duarte R, Karshikoff A, Ladenstein R (2003) The catalytic mechanism of Drosophila alcohol dehydrogenase: evidence for a proton relay modulated by the coupled ionisation of the active site lysine/tyrosine pair and a NAD+ ibose OH switch. Proteins (in press)

    Google Scholar 

  • Kurnikova MG, Coalson RD, Graf P, Nitzan A (1999) A lattice relaxation for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. Biophys J 76:642–656

    CAS  PubMed  Google Scholar 

  • Levitt DG (1999) Modeling of ion channels. J Gen Physiol 113:789–794

    CAS  PubMed  Google Scholar 

  • Moy G, Corry B, Kuyucak S, Chung,S H (2000) Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics. Biophys J 78:2349–2363

    CAS  PubMed  Google Scholar 

  • Nicholls A, Honig B (1991) A rapide finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J Comput Chem 12:435–445

    Google Scholar 

  • Nonner W, Eisenberg B (1998) Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. Biophys J 75:1287–1305

    CAS  PubMed  Google Scholar 

  • Nonner W, Chen DP, Eisenberg B (1998) Anomalous mole fraction effect, electrostatics, and binding in ionic channels. Biophys J 74:2327–2334

    CAS  PubMed  Google Scholar 

  • Nonner W, Chen DP, Eisenberg B (1999) Progress and prospects in permeation. J Gen Physiol 113:773–782

    Article  CAS  PubMed  Google Scholar 

  • Nonner W, Catacuzzeno L, Eisenberg B (2000) Binding and selectivity in L-type Ca channels: a mean spherical approximation. Biophys J 79:1976–1992

    CAS  PubMed  Google Scholar 

  • Nonner W, Gillespie D, Henderson D, Eisenberg B (2001) Ion accumulation in a biological calcium channel: effects of solvent and confining pressure. J Phys Chem B 105:6427–6436

    CAS  Google Scholar 

  • Partenskii MB, Jordan PC (1992) Theoretical perspectives on ion-channel electrostatics: continuum and microscopic approaches. Q Rev Biophys 25:477–510

    CAS  PubMed  Google Scholar 

  • Riveros O, Croxton T, Armstrong WMD (1989) Liquid junction potentials calculated from numerical solutions of the Nernst-Planck and Poisson equations. J Theor Biol 140:221–230

    CAS  PubMed  Google Scholar 

  • Robinson RA, Stokes RH (1959) Electrolyte solutions: the measurement and interpretation of conductance, chemical potential and diffusion in solutions of simple electrolytes, 2nd edn. Butterworths, London

    Google Scholar 

  • Roux B (2002) Theoretical and computational models of ion channels. Curr Opin Struct Biol 12:182–189

    Article  CAS  PubMed  Google Scholar 

  • Sansom MSP, Smith GR, Adcock C, Biggin PC (1997) The dielectric properties of water within model transbilayer pores. Biophys J 73:2404–2415

    CAS  PubMed  Google Scholar 

  • Sartoris G (1998) A 3D rectangular mixed finite element method to solve the stationary semiconductor equations. SIAM J Sci Comput 19:387–403

    Article  Google Scholar 

  • Schuss Z, Nadler B, Eisenberg RS (2001) Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Phys Rev E 64:036116

    CAS  Google Scholar 

  • Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, Berlin Heidelberg New York

  • Smith GR, Sansom MSP (1999) Effective diffusion coefficients of K+ and Cl ions in ion channel models. Biophys Chem 79:129–151

    CAS  PubMed  Google Scholar 

  • Tieleman D, Berendsen H (1998) A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J 74:2786–2801

    CAS  PubMed  Google Scholar 

  • Tieleman DP, Biggin PC, Smith GR, Sansom MSP (2001) Simulation approaches to ion channel structure–function relationships. Q Rev Biophys 34:473–561

    CAS  PubMed  Google Scholar 

  • Voges D, Karshikoff A (1998) A model for a local static dielectric constant in macromolecules. J Phys Chem 108:2219–2227

    Article  CAS  Google Scholar 

  • Warwicker J, Watson NC (1982) Calculation of the electric field potential in the active site cleft due to alpha-helix dipoles. J Mol Biol 157:671–679

    PubMed  Google Scholar 

  • Zachariae U, Koumanov A, Engelhardt H, Karshikoff A (2002) Electrostatic properties of the anion selective porin Omp32 from Delftia acidovorans and of the arginine cluster of bacterial porins. Protein Sci 11:1309–1319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

U.Z. thanks EMBO for a short-term fellowship, ASTF 9864.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assen Koumanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koumanov, A., Zachariae, U., Engelhardt, H. et al. Improved 3D continuum calculations of ion flux through membrane channels. Eur Biophys J 32, 689–702 (2003). https://doi.org/10.1007/s00249-003-0330-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0330-y

Keywords

Navigation