Skip to main content
Log in

Circular dichroism spectra of β-peptides: sensitivity to molecular structure and effects of motional averaging

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Circular dichroism spectra of two β-peptides, i.e. peptides composed of β-amino acids, calculated using ensembles of configurations obtained by molecular dynamics simulation are presented. The calculations were based on 200 ns simulations of a β-heptapeptide in methanol at 298 K and 340 K and a 50 ns simulation of a β-hexapeptide in methanol at 340 K. In the simulations the peptides sampled both folded (helical) and unfolded structures. Trajectory structures with common backbone conformations were identified and grouped into clusters. The CD spectra were calculated for individual structures, based on peptide-group dipole transition moments obtained from semi-empirical molecular orbital theory and using the so-called matrix method. The single-structure spectra were then averaged over entire trajectories and over clusters of structures. Although certain features of the experimental CD spectra of the β-peptides are reproduced by the trajectory-average spectra, there exist clear differences between the two sets of spectra in both wavelength and peak intensities. The analysis of individual contributions to the average spectra shows that, in general, the interpretation of a CD signal in terms of a single structure is not possible. Moreover, there is a large variation in the CD spectra calculated for a set of individual structures that belong to the same cluster, even when a structurally tight clustering criterion is used. This indicates that the CD spectra of these peptides are very sensitive to small local structural differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A, B.
Fig. 5A, B.
Fig. 6A, B.
Fig. 7A–D.

Similar content being viewed by others

References

  • Abele S, Guichard G, Seebach D (1998) (S)-β3-Homolysine- and (S)-β3-homoserine-containing β-peptides: CD spectra in aqueous solution. Helv Chim Acta 81:2141–2156

    Article  Google Scholar 

  • Appella DH, Christianson LA, Karle IL, Powell DR, Gellman SH (1996) β-Peptide foldamers: robust helix formation in a new family of β-amino acid oligomers. J Am Chem Soc 118:13071–13072

    Article  Google Scholar 

  • Appella DH, Christianson LA, Klein DA, Powell DR, Huang X, Barchi JJ, Gellman SH (1997) Residue-based control of helix shape in β-peptide oligomers. Nature 387:381–384

    CAS  PubMed  Google Scholar 

  • Appella DH, Barchi JJ Jr, Durell SR, Gellman SH (1999) Formation of short, stable helices in aqueous solution by β-amino acid hexamers. J Am Chem Soc 121:2309–2310

    Article  CAS  Google Scholar 

  • Applequist J (1973) Polarizability theory of optical rotation. J Chem Phys 58:4251–4259

    CAS  Google Scholar 

  • Applequist J, Bode KA (2000) Fully extended poly(β-amino acid) chains: translational helices with unusual theoretical π-π* absorption and circular dichroic spectra. J Phys Chem A 104:7129–7132

    Article  CAS  Google Scholar 

  • Applequist J, Bode KA, Appella DH, Christianson LA, Gellman SH (1998) Theoretical and experimental circular dichroic spectra of the novel helical foldamer poly[(1R,2R)-trans-2-aminocyclopentanecarboxylic acid]. J Am Chem Soc 120:4891–4892

    Article  CAS  Google Scholar 

  • Bayley PM, Nielsen EB, Schellman JA (1969) The rotatory properties of molecules containing 2 peptide groups: theory. J Phys Chem 73:228–243

    CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  • Berova N, Nakanishi K, Woody RW (2000) Circular dichroism: principles and application. Wiley-VCH, New York

    Google Scholar 

  • Besley NA, Hirst JD (1999) Theoretical studies toward quantitative protein circular dichroism calculations. J Am Chem Soc 121:9636–9644

    Article  CAS  Google Scholar 

  • Bode KA, Applequist J (1997) Poly(β-amino acid) helices. Theoretical π-π* absorption and circular dichroic spectra. Macromolecules 30:2144–2150

    Article  CAS  Google Scholar 

  • Bode KA, Applequist J (1998) Globular protein ultraviolet circular dichroic spectra. Calculation from crystal structures via the dipole interaction model. J Am Chem Soc 120:10938–10946

    Article  CAS  Google Scholar 

  • Borman S (1997) β-Peptides: nature improved? Chem Eng News 75:32–35

    Google Scholar 

  • Bringmann G, Mühlbacher J, Repges C, Fleischhauer J (2001) MD-based CD calculations for the assignment of the absolute axial configuration of the naphthylisoquinoline alkaloid dioncophylline A. J Comput Chem 22:1273–1278

    Article  CAS  Google Scholar 

  • Burgi R, Pitera J, van Gunsteren WF (2001) Assessing the effect of conformational averaging on the measured values of observables. J Biomol NMR 19:305–320

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar J, Saunders M, Jorgensen WL (2001) Efficient exploration of conformational space using the stochastic search method: application to β-peptide oligomers. J Comput Chem 22:1646–1654

    Article  CAS  Google Scholar 

  • Chung YJ, Christianson LA, Stanger HE, Powell DR, Gellman SH (1998) A β-peptide reverse turn that promotes hairpin formation. J Am Chem Soc 120:10555–10556

    Article  CAS  Google Scholar 

  • Clark LB (1995) Polarization assignments in the vacuum UV spectra of the primary amide, carboxyl, and peptide groups. J Am Chem Soc 117:7974–7986

    CAS  Google Scholar 

  • Daura X, van Gunsteren WF, Rigo D, Jaun B, Seebach D (1997) Studying the stability of a helical β-heptapeptide by molecular dynamics simulations. Chem Eur J 3:1410–1417

    CAS  Google Scholar 

  • Daura X, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1998) Reversible peptide folding in solution by molecular dynamics simulation. J Mol Biol 280:925–932

    Article  CAS  PubMed  Google Scholar 

  • Daura X, Antes I, van Gunsteren WF, Thiel W, Mark AE (1999a) The effect of motional averaging on the calculation of NMR-derived structural properties. Proteins Struct Funct Genet 36:542–555

    Article  CAS  PubMed  Google Scholar 

  • Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1999b) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240

    Article  CAS  Google Scholar 

  • Daura X, van Gunsteren WF, Mark AE (1999c) Folding-unfolding thermodynamics of a β-heptapeptide from equilibrium simulations. Proteins Struct Funct Genet 34:269–280

    Article  CAS  PubMed  Google Scholar 

  • Daura X, Gademann K, Schäfer H, Jaun B, Seebach D, van Gunsteren WF (2001) The β-peptide hairpin in solution: conformational study of a β-hexapeptide in methanol by NMR spectroscopy and MD simulation. J Am Chem Soc 123:2393–2404

    Article  CAS  PubMed  Google Scholar 

  • Del Bene J, Jaffe HH (1968a) Use of CNDO method in spectroscopy. 2. 5-membered rings. J Chem Phys 48:4050

    Google Scholar 

  • Del Bene J, Jaffe HH (1968b) Use of CNDO method in spectroscopy. 1. Benzene, pyridine and diazines. J Chem Phys 48:1807

    Google Scholar 

  • DeVoe H (1964) Optical properties of molecular aggregates. 1. Classical model of electronic absorption+refraction. J Chem Phys 41:393–400

    CAS  Google Scholar 

  • DeVoe H (1965) Optical properties of molecular aggregates. 2. Classical theory of refraction absorption and optical activity of solutions and crystals. J Chem Phys 43:3199–3208

    CAS  Google Scholar 

  • Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York

  • Fleischhauer J, Kramer B, Zobel E, Koslowski A (1991) MATMAC: matrix and Tinoco method Aachen. Aachen, Germany

  • Fleischhauer J, Grotzinger J, Kramer B, Krüger P, Wollmer A, Woody RW, Zobel E (1994) Calculation of the circular-dichroism spectrum of cyclo(L-Tyr- L-Tyr) based on a molecular-dynamics simulation. Biophys Chem 49:141–152

    Article  CAS  PubMed  Google Scholar 

  • Foresman JB, Head-Gordon M, Pople JA, Frisch MJ (1992) Toward a systematic molecular-orbital theory for excited-states. J Phys Chem 96:135–149

    CAS  Google Scholar 

  • Gademann K, Ernst M, Hoyer D, Seebach D (1999a) Synthesis and biological evaluation of a cyclo-β-tetrapeptide as a somatostatin analogue. Angew Chem Int Ed 38:1223–1226

    Article  CAS  Google Scholar 

  • Gademann K, Hintermann T, Schreiber JV (1999b) β-Peptides: twisting and turning. Curr Med Chem 6:905–925

    Google Scholar 

  • Gademann K, Jaun B, Seebach D, Perozzo R, Scapozza L, Folkers G (1999c) Temperature-dependent NMR and CD spectra of β-peptides: on the thermal stability of β-peptide helices – is the folding process of β-peptides non-cooperative? Helv Chim Acta 82:1–11

    Google Scholar 

  • Gademann K, Ernst M, Seebach D, Hoyer D (2000) The cyclo-β-tetrapeptide (β-HPhe-β-HThr-β-HLys-β-HTrp): synthesis, NMR structure in methanol solution, and affinity for human somatostatin receptors. Helv Chim Acta 83:16–33

    Google Scholar 

  • Gellman SH (1998) Foldamers: a manifesto. Acc Chem Res 31:173–180

    Article  CAS  Google Scholar 

  • Glättli A, Daura X, Seebach D, Van Gunsteren WF (2002) Can one derive the conformational preference of a β-peptide from its CD spectrum? J Am Chem Soc 124:12972–12978

    Google Scholar 

  • Goldmann E, Sanford AA, Mukamel S (2001) Electronic excitations of polyalanine; test of the independent chromophore approximation. Phys Chem Chem Phys 3:2893–2903

    Article  CAS  Google Scholar 

  • Gung BW, Zou D, Stalcup AM, Cottrell CE (1999) Characterization of a water-soluble, helical β-peptide. J Org Chem 64:2176–2177

    Article  CAS  Google Scholar 

  • Hamuro Y, Schneider JP, DeGrado WF (1999) De novo design of antibacterial β-peptides. J Am Chem Soc 121:12200–12201

    Article  CAS  Google Scholar 

  • Hintermann T, Seebach D (1997) The biological stability of β-peptides: no interactions between α- and β-peptidic structures? Chimia 51:244–247

    Google Scholar 

  • Hirst JD (1998a) Improving protein circular dichroism calculations through better ab initio models of the amide chromophore. Enantiomer 3:215–220

    CAS  Google Scholar 

  • Hirst JD (1998b) Improving protein circular dichroism calculations in the far-ultraviolet through reparametrizing the amide chromophore. J Chem Phys 109:782–788

    Article  CAS  Google Scholar 

  • Iverson BL (1997) Betas are brought into the fold. Nature 385:113–115

    CAS  PubMed  Google Scholar 

  • Krauthäuser S, Christianson LA, Powell DR, Gellman SH (1997) Antiparallel sheet formation in β-peptide foldamers: effects of β-amino acid substitution on conformational preference. J Am Chem Soc 119:11719–11720

    Article  Google Scholar 

  • Kurapkat G, Krüger P, Wollmer A, Fleischhauer J, Kramer B, Zobel E, Koslowski A, Botterweck H, Woody RW (1997) Calculations of the CD spectrum of bovine pancreatic ribonuclease. Biopolymers 41:267–287

    Article  CAS  PubMed  Google Scholar 

  • Möhle K, Günther R, Thormann M, Sewald N, Hofmann HJ (1999) Basic conformers in β-peptides. Biopolymers 50:167–184

    Article  PubMed  Google Scholar 

  • Peter C, Daura X, van Gunsteren WF (2001) Calculation of NMR-relaxation parameters for flexible molecules from molecular dynamics simulations. J Biomol NMR 20:297–310

    Article  CAS  PubMed  Google Scholar 

  • Porter EA, Wang X, Lee H-S, Weisblum B, Gellman SH (2000a) Non-haemolytic β-amino-acid oligomers. Nature 405:298

    CAS  PubMed  Google Scholar 

  • Porter EA, Wang X, Lee H-S, Weisblum B, Gellman SH (2000b) Antibiotics – non-haemolytic β-amino-acid oligomers. Nature 404:565–565

    Article  CAS  PubMed  Google Scholar 

  • Rueping M, Schreiber JV, Lelais G, Jaun B, Seebach D (2002) Mixed β23-hexapeptides and β23-nonapeptides folding to (P)-helices with alternating twelve- and ten-membered hydrogen-bonded rings. Helv Chim Acta 85:2577–2593

    Article  CAS  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    CAS  Google Scholar 

  • Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    CAS  Google Scholar 

  • Seebach D, Ciceri PE, Overhand M, Jaun B, Rigo D, Oberer L, Hommel U, Amstutz R, Widmer H (1996a) Probing the helical secondary structure of short-chain β-peptides. Helv Chim Acta 79:2043–2066

    CAS  Google Scholar 

  • Seebach D, Overhand M, Kühnle FNM, Martinoni B, Oberer L, Hommel U, Widmer H (1996b) β-Peptides: synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a β-hexpeptide in solution and its stability towards pepsin. Helv Chim Acta 79:913–941

    CAS  Google Scholar 

  • Seebach D, Gademann K, Schreiber JV, Matthews JL, Hintermann T, Jaun B, Oberer L, Hommel U, Widmer H (1997) 'Mixed' β-peptides: a unique helical secondary structure in solution. Helv Chim Acta 80:2033–2038

    CAS  Google Scholar 

  • Seebach D, Abele S, Gademann K, Guichard G, Hintermann T, Jaun B, Matthews JL, Schreiber JV (1998a) β2- and β3-peptides with proteinaceous side chains: synthesis and solution structures of constitutional isomers, a novel helical secondary structure and the influence of solvation and hydrophobic interactions on folding. Helv Chim Acta 81:932–982

    CAS  Google Scholar 

  • Seebach D, Abele S, Schreiber JV, Martinoni B, Nussbaum AK, Schild H, Schulz H, Hennecke H, Woessner R, Bitsch F (1998b) Biological and pharmacokinetic studies with β-peptides. Chimia 52:734–739

    CAS  Google Scholar 

  • Seebach D, Abele S, Sifferlen T, Hänggi M, Gruner S, Seiler P (1998c) Preparation and structure of β-peptides consisting of geminally disubstituted β2,2- and β3,3-amino acids: a turn motif for β-peptides. Helv Chim Acta 81:2218–2243

    Article  CAS  Google Scholar 

  • Seebach D, Abele S, Gademann K, Jaun B (1999) Pleated sheets and turns of β-peptides with proteinogenic side chains. Angew Chem Int Ed 38:1595–1597

    Article  CAS  Google Scholar 

  • Seebach D, Schreiber JV, Abele S, Daura X, van Gunsteren WF (2000a) Structure and conformation of β-oligopeptide derivatives with simple proteinogenic side chains: circular dichroism and molecular dynamics investigations. Helv Chim Acta 83:34–57

    Article  CAS  Google Scholar 

  • Seebach D, Sifferlen T, Mathieu PA, Häne AM, Krell CM, Bierbaum DJ, Abele S (2000b) CD spectra in methanol of β-oligopeptides consisting of β-amino acids with functionalized side chains, with alternating configuration, and with geminal backbone substituents – fingerprints of new secondary structures? Helv Chim Acta 83:2849–2864

    Google Scholar 

  • Tinoco I (1960) Optical and other electronic properties of polymers. J Chem Phys 33:1332–1338

    CAS  Google Scholar 

  • Tinoco I (1962) Theoretical aspects of optical activity. 2. Polymers. Adv Chem Phys 4:113–160

    CAS  Google Scholar 

  • van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Hochschulverlag, ETH Zürich/BIOMOS, Zürich/Groningen

    Google Scholar 

  • Werder M, Hauser H, Abele S, Seebach D (1999) β-Peptides as inhibitors of small-intestinal cholesterol and fat absorption. Helv Chim Acta 82:1774–1783

    Article  CAS  Google Scholar 

  • Woody RW (1995) Absorption and circular dichroism. In: Sauer K (ed) Biochemical spectroscopy, vol 246. Academic Press, San Diego, pp 34–71

  • Woody RW (1996) Theory of circular dichroism of proteins. In: Fasman DG (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum Press, New York, pp 25–67

  • Woody RW, Sreerama N (1999) Comment on "improving protein circular dichroism calculations in the far-ultraviolet through reparametrizing the amide chromophore", J Chem Phys 109:782 (1998). J Chem Phys 111:2844–2845

    Article  CAS  Google Scholar 

  • Woody RW, Tinoco I (1967) Optical rotation of oriented helices. 3. Calculation of rotatory dispersion and circular dichroism of α- and 310-helix. J Chem Phys 46:4927–

    CAS  Google Scholar 

  • Wu YD, Wang DP (1998) Theoretical studies of β-peptide models. J Am Chem Soc 120:13485–13493

    Article  CAS  Google Scholar 

  • Wu YD, Wang DP (1999) Theoretical study on side-chain control of the 14-helix and the 10/12-helix of β-peptides. J Am Chem Soc 121:9352–9362

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred F. van Gunsteren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daura, X., Bakowies, D., Seebach, D. et al. Circular dichroism spectra of β-peptides: sensitivity to molecular structure and effects of motional averaging. Eur Biophys J 32, 661–670 (2003). https://doi.org/10.1007/s00249-003-0303-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0303-1

Keywords

Navigation