Skip to main content
Log in

Adenophostin A and imipramine are two activators of the olfactory inositol 1,4,5-trisphosphate-gated channel in fish olfatory cilia

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Binding of an odorant to its receptor activates the cAMP-dependent pathway, and also leads to inositol 1,4,5-trisphosphate (InsP3) production. This induces opening of a plasma membrane channel in olfactory receptor cells (ORCs). We investigated single-channel properties of this channel in the presence of a phospholipase C (PLC) activator (imipramine) and of a potent activator of the InsP3/Ca2+ release channel (adenophostin A) by reconstituting carp olfactory cilia into planar lipid bilayers. In the presence of 53 mM barium as a charge carrier, the addition of 50 µM imipramine induced a current of 1.53±0.05 pA at 0 mV. There were two different mean open times (6.0±0.6 ms and 49.6±6.4 ms). The I/V curve displayed a slope conductance of 50±2 pS. Channel activity was transient and was blocked by neomycin (50 µM). These observations suggest that imipramine may activate the olfactory InsP3-gated channel through PLC. Using the same ionic conditions, the application of 0.5 µM adenophostin A triggered a current of 1.47±0.04 pA at 0 mV. The I/V curve displayed a slope conductance of 60±2 pS. This channel showed only a single mean open time (15.0±0.3 ms) and was strongly inhibited by ruthenium red (30 µM) and heparin (10 µg/mL). These results indicate that adenophostin A and imipramine may act on the ciliary InsP3-gated channel and are potentially valuable pharmacological tools for studying olfactory transduction mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D.
Fig. 2A, B.
Fig. 3A–D.
Fig. 4A, B.

Similar content being viewed by others

Abbreviations

CNGc :

cyclic nucleotide-gated channel

EDTA :

ethylenediaminetetraacetic acid

EGTA :

ethyleneglycol-bis(β-aminoethyl)-N,N,N',N'-tetraacetic acid

ER :

endoplasmic reticulum

HEEDTA :

N-(2-hydroxyethyl)ethylenediaminetriacetic acid

HEPES :

N-2-(hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid)

InsP 3 :

inositol 1,4,5-trisphosphate

ORCs :

olfactory receptor cells

PdtIns(4,5)P 2 :

phosphatidylinositol 4,5-bisphosphate

References

  • Abogadie FC, Bruch RC, Wurzburger R, Margolis FL, Farbman AI (1995) Molecular cloning of a phosphoinositide-specific phospholipase C from catfish olfactory rosettes. Brain Res Mol Brain Res 31:10–16

    Article  CAS  PubMed  Google Scholar 

  • Boekhoff I, Tareilus E, Strotmann J, Breer H (1990) Rapid activation of alternative second messenger pathways in olfactory cilia from rats by different odorants. EMBO J 9:2453–2458

    CAS  PubMed  Google Scholar 

  • Breer H, Boekhoff I, Tareilus E (1990) Rapid kinetics of second messenger formation in olfactory transduction. Nature 345:65–68

    CAS  PubMed  Google Scholar 

  • Bruch RC, Abogadie FC, Farbman AI (1995) Identification of three phospholipase C isotypes expressed in rat olfactory epithelium. Neuroreport 6:233–237

    CAS  PubMed  Google Scholar 

  • Cadiou H, Sienaert I, Vanlingen S, Parys JB, Molle G, Duclohier H (2000) Basic properties of an inositol 1,4,5-trisphosphate-gated channel in carp olfactory cilia. Eur J Neurosci 12:2805–2811

    Article  CAS  PubMed  Google Scholar 

  • Colquhoun D, Sigworth FJ (1995) Fitting and statistical analysis of single channel records. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Plenum Press, New York, pp 483–587

  • Correa V, Riley AM, Shuto S, Horne G, Nerou EP, Marwood RD, Potter BV, Taylor CW (2001) Structural determinants of adenophostin A activity at inositol trisphosphate receptors. Mol Pharmacol 59:1206–1215

    CAS  PubMed  Google Scholar 

  • Cunningham AM, Ryugo DK, Sharp AH, Reed RR, Snyder SH, Ronnett GV (1993) Neuronal inositol 1,4,5-trisphosphate receptor localized to the plasma membrane of olfactory cilia. Neuroscience 57:339–352

    CAS  PubMed  Google Scholar 

  • Deshpande M, Venkatesh K, Rodrigues V, Hasan G (2000) The inositol 1,4,5-trisphosphate receptor is required for maintenance of olfactory adaptation in Drosophila antennae. J Neurobiol 43:282–288

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich BE, Kaftan E, Bezprozvannaya S, Bezprozvanny I (1994) The pharmacology of intracellular Ca2+-release channels. Trends Pharmacol Sci 15:145–149

    PubMed  Google Scholar 

  • Fadool DA, Ache BW (1992) Plasma membrane inositol 1,4,5-trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. Neuron 9:907–918

    CAS  PubMed  Google Scholar 

  • Fukuda H, Nishida A, Saito H, Shimizu M, Yamawaki S (1994) Imipramine stimulates phospholipase C activity in rat brain. Neurochem Int 25:567–571

    CAS  PubMed  Google Scholar 

  • Gold GH (1999) Controversial issues in vertebrate olfactory transduction. Annu Rev Physiol 61:857–871

    Article  CAS  PubMed  Google Scholar 

  • Gomez G, Rawson NE, Cowart B, Lowry LD, Pribitkin EA, Restrepo D (2000) Modulation of odor-induced increases in [Ca2+]i by inhibitors of protein kinases A and C in rat and human olfactory receptor neurons. Neuroscience 98:181–189

    Article  CAS  PubMed  Google Scholar 

  • Hanke W, Methfessel C, Wilmsen U, Boheim G (1984) Ion channel reconstitution into lipid bilayer membranes on glass patch pipettes. Bioelectrochem Bioenerg 173:329–339

    Article  Google Scholar 

  • Haws CM, Winegar BD, Lansman JB (1996) Block of single L-type Ca2+ channels in skeletal muscle fibers by aminoglycoside antibiotics. J Gen Physiol 107:421–432

    CAS  PubMed  Google Scholar 

  • Kalinoski DL, Aldinger SB, Boyle AG, Huque T, Marecek JF, Prestwich GD, Restrepo D (1992) Characterization of a novel inositol 1,4,5-trisphosphate receptor in isolated olfactory cilia. Biochem J 281:449–456

    CAS  PubMed  Google Scholar 

  • Kashiwayanagi M, Tatani K, Shuto S, Matsuda A (2000) Inositol 1,4,5-trisphosphate and adenophostin analogues induce responses in turtle olfactory sensory neurons. Eur J Neurosci 12:606–612

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Zhu XO, Moorhouse AJ, Barry PH (2001) IP3-gated channels and their occurrence relative to CNG channels in the soma and dendritic knob of rat olfactory receptor neurons. J Membr Biol 181:91–105

    CAS  PubMed  Google Scholar 

  • Lischka FW, Zviman MM, Teeter JH, Restrepo D (1999) Characterization of inositol-1,4,5-trisphosphate-gated channels in the plasma membrane of rat olfactory neurons. Biophys J 76:1410–1422

    CAS  PubMed  Google Scholar 

  • Lo YH, Bellis SL, Cheng LJ, Pang J, Bradley TM, Rhoads DE (1994) Signal transduction for taurocholic acid in the olfactory system of Atlantic salmon. Chem Senses 19:371–380

    CAS  PubMed  Google Scholar 

  • Ma L, Michel WC (1998) Drugs affecting phospholipase C-mediated signal transduction block the olfactory cyclic nucleotide-gated current of adult zebrafish. J Neurophysiol 79:1183–1192

    CAS  PubMed  Google Scholar 

  • Maes K, Missiaen L, Parys JB, Sienaert I, Bultynck G, Zizi M, De Smet P, Casteels R, De Smedt H (1999) Adenine-nucleotide binding sites on the inositol 1,4,5-trisphosphate receptor bind caffeine, but not adenophostin A or cyclic ADP-ribose. Cell Calcium 25:143–152

    Article  CAS  PubMed  Google Scholar 

  • Mak DO, McBride S, Foskett JK (2001) ATP-dependent adenophostin activation of inositol 1,4,5-trisphosphate receptor channel gating. Kinetic implications for the durations of calcium puffs in cells. J Gen Physiol 117:299–314

    Article  CAS  PubMed  Google Scholar 

  • Marchant JS, Beecroft MD, Riley AM, Jenkins DJ, Marwood RD, Taylor CW, Potter BV (1997) Disaccharide polyphosphates based upon adenophostin A activate hepatic D-myo-inositol 1,4,5-trisphosphate receptors. Biochemistry 36:12780–12790

    Article  CAS  PubMed  Google Scholar 

  • Missiaen L, Parys JB, Sienaert I, Maes K, Kunzelmann K, Takahashi M, Tanzawa K, De Smedt H (1998) Functional properties of the type-3 InsP3 receptor in 16HBE14o bronchial mucosal cells. J Biol Chem 273:8983–8986

    Article  CAS  PubMed  Google Scholar 

  • Munger SD, Gleeson RA, Aldrich HC, Rust NC, Ache BW, Greenberg RM (2000) Characterization of a phosphoinositide-mediated odor transduction pathway reveals plasma membrane localization of an inositol 1,4, 5- trisphosphate receptor in lobster olfactory receptor neurons. J Biol Chem 275:20450–20457

    Article  CAS  PubMed  Google Scholar 

  • Murphy CT, Riley AM, Lindley CJ, Jenkins DJ, Westwick J, Potter BV (1997) Structural analogues of D-myo-inositol-1,4,5-trisphosphate and adenophostin A: recognition by cerebellar and platelet inositol 1,4,5-trisphosphate receptors. Mol Pharmacol 52:741–748

    CAS  PubMed  Google Scholar 

  • Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444

    CAS  PubMed  Google Scholar 

  • Noe J, Breer H (1998) Functional and molecular characterization of individual olfactory neurons. J Neurochem 71:2286–2293

    CAS  PubMed  Google Scholar 

  • Paysan J, Breer H (2001) Molecular physiology of odor detection: current views. Pflugers Arch 441:579–586

    CAS  PubMed  Google Scholar 

  • Restrepo D, Miyamoto T, Bryant BP, Teeter JH (1990) Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish. Science 249:1166–1168

    CAS  PubMed  Google Scholar 

  • Riesgo-Escovar J, Raha D, Carlson JR (1995) Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila. Proc Natl Acad Sci USA 92:2864–2868

    CAS  PubMed  Google Scholar 

  • Romoser V, Ball R, Smrcka AS (1996) Phospholipase C beta2 association with phospholipid interfaces assessed by fluorescence resonance energy transfer. G protein betagamma subunit-mediated translocation is not required for enzyme activation. J Biol Chem 271:25071–25078

    Article  CAS  PubMed  Google Scholar 

  • Ronnett GV, Cho H, Hester LD, Wood SF, Snyder SH (1993) Odorants differentially enhance phosphoinositide turnover and adenylyl cyclase in olfactory receptor neuronal cultures. J Neurosci 13:1751–1758

    CAS  PubMed  Google Scholar 

  • Schild D, Restrepo D (1998) Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 78:429–466

    CAS  PubMed  Google Scholar 

  • Slivka SR, Insel PA (1988) Phorbol ester and neomycin dissociate bradykinin receptor-mediated arachidonic acid release and polyphosphoinositide hydrolysis in Madin-Darby canine kidney cells. Evidence that bradykinin mediates noninterdependent activation of phospholipases A2 and C. J Biol Chem 263:14640–14647

    CAS  PubMed  Google Scholar 

  • Takahashi M, Tanzawa K, Takahashi S (1994) Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5- trisphosphate receptor. J Biol Chem 269:369–372

    CAS  PubMed  Google Scholar 

  • Thrower EC, Duclohier H, Lea EJA, Molle G, Dawson AP (1996) The inositol 1,4,5-trisphosphate-gated Ca2+ channel: effect of the protein thiol reagent thimerosal on channel activity. Biochem J 318:61–66

    CAS  PubMed  Google Scholar 

  • Wekesa KS, Anholt RR (1997) Pheromone regulated production of inositol-(1,4,5)-trisphosphate in the mammalian vomeronasal organ. Endocrinology 138:3497–3504

    CAS  PubMed  Google Scholar 

  • Xu F, McClintock TS (1999) A lobster phospholipase C-beta that associates with G-proteins in response to odorants. J Neurosci 19:4881–4888

    CAS  PubMed  Google Scholar 

  • Zeng WZ, Liou HH, Krishna UM, Falck JR, Huang CL (2002) Structural determinants and specificities for ROMK1-phosphoinositide interaction. Am J Physiol Renal Physiol 282:826–834

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Région Haute Normandie (HC). The authors wish to thank Dr. Frank Wissing (University of Heidelberg) for suggestions in the use of adenophostin A and for reviewing an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Molle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadiou, H., Molle, G. Adenophostin A and imipramine are two activators of the olfactory inositol 1,4,5-trisphosphate-gated channel in fish olfatory cilia. Eur Biophys J 32, 106–112 (2003). https://doi.org/10.1007/s00249-002-0271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-002-0271-x

Keywords

Navigation