Skip to main content
Log in

Combined nanomanipulation by atomic force microscopy and UV-laser ablation for chromosomal dissection

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Nanomanipulation and nanoextraction on a scale close to and beyond the resolution limit of light microscopy is needed for many modern applications in biological research. For the manipulation of biological specimens a combined microscope allowing for ultraviolet (UV) microbeam laser manipulation together with manipulation by an atomic force microscope (AFM) was used. In a one-step procedure, human metaphase chromosomes were dissected optically by the UV-laser ablation and mechanically by AFM manipulation. With both methods, sub-400-nm cuts could be achieved routinely. Thus, the AFM is an indispensable tool for in situ quality control of nanomanipulation. However, already on this scale the dilation of the topographic AFM image due to the tip geometry can become significant. Therefore the AFM images were restored using a tip geometry obtained by a blind tip-reconstruction algorithm. Cross-sectional analysis of the restored image reveals a 380-nm-wide UV-laser cut and AFM cuts between 70 nm and 280 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Allen MJ, Lee C, Lee JDT, Pogany GC, Balooch M, Siekhaus WJ, Balhorn R (1993) Atomic-force microscopy of mammalian sperm chromatin. Chromosoma 102:623–630

    CAS  PubMed  Google Scholar 

  • Bäuerle D (2000) Laser processing and chemistry, 3rd edn. Springer, Berlin Heidelberg New York

  • Berns MW, Olson RS, Rounds DE (1969) In vitro production of chromosomal lesions with an argon laser microbeam. Nature 221:74–75

    CAS  PubMed  Google Scholar 

  • Clement Sengewald A, Buchholz T, Schütze K (2000) Laser microdissection as a new approach to prefertilization genetic diagnosis. Pathobiology 68:232–236

    Article  PubMed  Google Scholar 

  • De Grooth BG, Putman CAJ (1992) High-resolution imaging of chromosome-related structures by atomic-force microscopy. J Microsc 168:239–247

    PubMed  Google Scholar 

  • Dongmo S, Troyon M, Vautrot P, Delain E, Bonnet N (1996) Blind restoration method of scanning tunneling and atomic-force microscopy images. J Vac Sci Technol B 14:1552–1556

    Article  CAS  Google Scholar 

  • Emmert Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhengping Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274:998–1001

    CAS  PubMed  Google Scholar 

  • Endlich N, Harim A, Greulich KO (1994) Microdissection of single DNA molecules and DNA-polycation complexes with a UV-laser microbeam in a classical light microscope. Exp Tech Phys 40:87–93

    Google Scholar 

  • Fritzsche W, Martin L, Dobbs D, Jondle D, Miller R, Vesenka J, Henderson E (1996) Reconstruction of ribosomal subunits and rDNA chromatin imaged by scanning force microscopy. J Vac Sci Technol B 14:1405–1409

    Article  CAS  Google Scholar 

  • Godstein SR, Pohida T, Smith PD, Peterson JI, Wellner E, Malekafzali A, Suarez Qian CA, Bonner RF (1999) An instrument for performing laser capture microdissection of single cells. Rev Sci Instrum 70:4377–4385

    Article  Google Scholar 

  • Greulich KO (1999) Micromanipulation by light in biology and medicine: the laser microbeam and optical tweezers. Birkhäuser, Basel

    Google Scholar 

  • Greulich KO, Pilarczyk G, Hoffmann A, Meyer Zu Horste G, Schafer B, Uhl V, Monajembashi S (2000) Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules. J Microsc 198:182–187

    Article  CAS  PubMed  Google Scholar 

  • Guthold M, Falvo M, Matthews WG, Paulson S, Mullin J, Lord S, Erie D, Washburn S, Superfine R, Brooks FP Jr, Taylor RM II (1999) Investigation and modification of molecular structures with the nanoManipulator. J Mol Graph Mod 17:187–197

    Article  CAS  Google Scholar 

  • Henderson E (1992) Imaging and nanodissection of individual supercoiled plasmids by atomic-force microscopy. Nucleic Acids Res 20:445–447 [erratum in Nucleic Acids Res (1992) 20:1841]

    Google Scholar 

  • Hillner PE, Radmacher M, Hansma PK (1995) Combined atomic-force and scanning reflection interference contrast microscopy. Scanning 17:144–147

    CAS  Google Scholar 

  • Jondle DM, Ambrosio L, Vesenka J, Henderson E (1995) Imaging and manipulating chromosomes with the atomic-force microscope. Chromosome Res 3:239–244

    CAS  PubMed  Google Scholar 

  • König K, Riemann I, Fritzsche W (2001) Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. Opt Lett 26:819–821

    Google Scholar 

  • Krautbaur R, Clausen-Schaumann H, Gaub HE (2000) Cisplatin changes the mechanics of single DNA molecules. Angew Chem Int Ed 39:3912–3915

    Article  Google Scholar 

  • Lerner B (1998) Toward a completely automatic neural-network-based human chromosome analysis. IEEE Trans Sys Man Cyber B 28:544–552

    Article  Google Scholar 

  • Markiewicz P, Goh MC (1995) Atomic-force microscope tip deconvolution using calibration arrays. Rev Sci Instrum 66:3186–3190

    Article  CAS  Google Scholar 

  • McMaster TJ, Hickish T, Min T, Cunningham D, Miles MJ (1994) Application of scanning force microscopy to chromosome analysis. Cancer Genet Cytogenet 76:93–95

    CAS  PubMed  Google Scholar 

  • Perkins TT, Quake SR, Smith DE, Chu S (1994) Relaxation of a single DNA molecule observed by optical microscopy. Science 264:822–826

    CAS  PubMed  Google Scholar 

  • Putman CAJ, Van Leeuwen AM, De Grooth BG, Radosevic K, Van Der Werf KO, Van Hulst NF, Greve J (1993) Atomic-force microscopy combined with confocal laser scanning microscopy: a new look at cells. Bioimaging 1:63–70

    Article  Google Scholar 

  • Rasch P, Wiedemann U, Wienberg J, Heckl WM (1993) Analysis of banded human chromosomes and in situ hybridization patterns by scanning force microscopy. Proc Natl Acad Sci USA 90:2509–2511

    CAS  PubMed  Google Scholar 

  • Rubio-Sierra FJ, Stark RW, Thalhammer S, Heckl W (2003) Force feedback joystick as a low cost haptic interface for an atomic-force microscopy nanomanipulator. Appl Phys A (in press)

  • Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic-force microscope cantilevers. Rev Sci Instrum 70:3967–3969

    Article  CAS  Google Scholar 

  • Schermelleh L, Thalhammer S, Heckl W, Pösl H, Cremer T, Schütze K, Cremer M (1999) Laser microdissection and laser pressure catapulting for the generation of chromosome-specific paint probes. Biotechniques 27:362–367

    CAS  PubMed  Google Scholar 

  • Schütze K, Becker I, Becker KF, Thalhammer S, Stark R, Heckl WM, Bohm M, Pösl H (1997) Cut out or poke in—the key to the world of single genes: laser micromanipulation as a valuable tool on the look-out for the origin of disease. Genet Anal 14:1–8

    PubMed  Google Scholar 

  • Srinivasan R (1986) Ablation of polymers and biological tissue by ultraviolet-lasers. Science 234:559–565

    CAS  PubMed  Google Scholar 

  • Stark RW, Thalhammer S, Wienberg J, Heckl WM (1998) The AFM as a tool for chromosomal dissection—the influence of physical parameters. Appl Phys A 66:S579–S584

    Article  Google Scholar 

  • Tamayo J, Miles M, Thein A, Soothill P (1999) Selective cleaning of the cell debris in human chromosome preparations studied by scanning force microscopy. J Struct Biol 128:200–210

    Article  CAS  PubMed  Google Scholar 

  • Thalhammer S, Stark RW, Müller S, Wienberg J, Heckl WM (1997a) The atomic-force microscope as a new microdissecting tool for the generation of genetic probes. J Struct Biol 119:232–237

    Article  CAS  PubMed  Google Scholar 

  • Thalhammer S, Stark RW, Schütze K, Wienberg J, Heckl WM (1997b) Laser microdissection of metaphase chromosomes and characterization by atomic-force microscopy. J Biomed Opt 2:115–119

    Google Scholar 

  • Thalhammer S, Koehler U, Stark RW, Heckl WM (2001) GTG banding pattern on human metaphase chromosomes revealed by high resolution atomic-force microscopy. J Microsc 202:464–467

    Article  CAS  PubMed  Google Scholar 

  • van Loenen EJ, Dijkkamp D, Hoeven AJ, Lenssinck JM, Dieleman J (1990) Evidence for tip imaging in scanning tunneling microscopy. Appl Phys Lett 56:1755–1757

    Article  Google Scholar 

  • Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102:425–454

    Google Scholar 

  • Vogel F, Motulsky AG (1997) Human genetics: problems and approaches, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Xu XM, Ikai A (1998) Retrieval and amplification of single-copy genomic DNA from a nanometer region of chromosomes: a new and potential application of atomic-force microscopy in genomic research. Biochem Biophys Res Commun 248:744–748

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Triple-O GmbH, Potsdam, Germany for technical support. Financial support by BMB+F, grant number 13N7509/1, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Stark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, R.W., Rubio-Sierra, F.J., Thalhammer, S. et al. Combined nanomanipulation by atomic force microscopy and UV-laser ablation for chromosomal dissection. Eur Biophys J 32, 33–39 (2003). https://doi.org/10.1007/s00249-002-0270-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-002-0270-y

Keywords

Navigation