Skip to main content
Log in

A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The performance of the GROMOS96 parameter set 45A3 developed for aliphatic alkanes is tested on a bilayer of dipalmitoylphosphatidylcholine (DPPC) in water in the liquid-crystalline Lα phase. Variants of the force-field parameter set as well as different sets of simulation conditions or simulation parameter sets are evaluated. In the case of the force-field parameters, the van der Waals constants for the non-bonded interaction of the ester carbonyl carbon and the partial charges and charge group definition of the phosphatidylcholine head group are examined. On the methodological side, different cut-off distances for the non-bonded interactions, use of a reaction-field force due to long-range electrostatic interactions, the frequency of removal of the centre of mass motion and the strength of the coupling of the pressure of the system to the pressure bath are tested. The area per lipid, as a measure of structure, the order parameters of the chain carbons, as a measure of membrane fluidity, and the translational diffusion of the lipids in the plane of the bilayer are calculated and compared with experimental values. An optimal set of simulation parameters for which the GROMOS96 parameter set 45A3 yields a head group area, chain order parameters and a lateral diffusion coefficient in accordance with the experimental data is listed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b.
Fig. 2a–c.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Alber F, Folkers G, Carloni P (1999) Dimethyl phosphate: stereoelectronic versus environmental effects. J Phys Chem B 103:6121–6126

    Article  CAS  Google Scholar 

  • Banavali NK, MacKerell AD Jr (2001) Reevaluation of stereoelectronic contributions to the conformational properties of the phosphodiester and N3'-phosphoramidate moieties of nucleic acids. J Am Chem Soc 123:6747–6755

    Article  CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  • Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    CAS  PubMed  Google Scholar 

  • Blume A (1993) Dynamic properties. In: Cevc G (ed) Phospholipids handbook. Dekker, New York, pp 455–511

  • Chandrasekhar I (1992) Parameter development for molecular dynamics simulation of lipids. In: Gaber BP, Easwaran KRK (eds) Biomembrane structure and function state of the art. Adenine Press, Albany, NY, pp 353–363

  • Chandrasekhar I, Sasisekharan V (1989) The nomenclature and conformational analysis of lipids and lipid analogues. Mol Cell Biochem 91:173–182

    CAS  PubMed  Google Scholar 

  • Chandrasekhar I, van Gunsteren W F (2001) Sensitivity of molecular dynamics simulations of lipids to the size of the ester carbon. Curr Sci 81:1325–1327

    CAS  Google Scholar 

  • Chandrasekhar I, van Gunsteren WF (2002) A comparison of the potential energy parameters of aliphatic alkanes: molecular dynamics simulations of triacylglycerols in the alpha phase. Eur Biophys J 31:89–101

    Article  CAS  PubMed  Google Scholar 

  • Chiu SW, Clark M, Subramaniam S, Scott HL, Jakobsson E (1995) Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Biophys J 69:1230–1245

    CAS  PubMed  Google Scholar 

  • Chiu SW, Clark M, Jakobsson E, Subramaniam S, Scott HL (1999) Optimisation of hydrocarbon chain interaction parameters: application to the simulation of fluid phase bilayers. J Phys Chem B 103:6323–6327

    Article  CAS  Google Scholar 

  • Daura X, Mark AE, van Gunsteren WF (1998) Parametrization of aliphatic CHn united atoms of the GROMOS96 force field. J Comput Chem 19:535–547

    CAS  Google Scholar 

  • Douliez J, Leonard A, Dufour EJ (1995) Restatement of order parameters in biomembranes: calculation of C-C bond order parameters from C-D quadrupolar splittings. Biophys J 68:1727–1739

    CAS  PubMed  Google Scholar 

  • Egberts E, Berendsen HJC (1988) Molecular dynamics simulation of a smectic liquid crystal with atomic detail. J Chem Phys 89:3718–3732

    CAS  Google Scholar 

  • Egberts E, Marrink S-J, Berendsen HJC (1994) Molecular dynamics simulation of a phospholipid membrane. Eur Biophys J 22:423–436

    CAS  PubMed  Google Scholar 

  • Feller SE (2000) Molecular dynamics simulations of lipid bilayers. Curr Opin Colloid Interface Sci 5:217–223

    Article  CAS  Google Scholar 

  • Feller SE, MacKerell D Jr (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104:7510–7515

    Article  CAS  Google Scholar 

  • Feller SE, Yin D, Pastor RW, MacKerell D Jr (1997) Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parametrization and comparison with diffraction studies. Biophys J 73:2269–2279

    CAS  PubMed  Google Scholar 

  • Florian J, Strajbl M, Warshel A (1998) Conformational flexibility of phosphate, phosphonate, and phosphorothioate methyl esters in aqueous solution. J Am Chem Soc 120:7959–7966

    Article  CAS  Google Scholar 

  • Forrest LR, Sansom MS (2000) Membrane simulations: bigger and better? Curr Opin Struct Biol 10:174–181

    CAS  PubMed  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrrzewski VG, Montgomery JA Jr, Straatmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pommeli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ciolowski J, Oritz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A, 6th edn. Gaussian, Pittsburgh

  • Gupta G, Rao SN, Sasisekharan V (1982) Conformational flexibility of DNA: an extension of the stereochemical guidelines. FEBS Lett 150:424–428

    Article  CAS  PubMed  Google Scholar 

  • Hauser H, Pascher I, Pearson RH, Sundell S (1981) Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta 650:21–51

    CAS  PubMed  Google Scholar 

  • Hermans J, Berendsen HJC, van Gunsteren WF, Postma JPM (1984) A consistent empirical potential for water-protein interactions. Biopolymers 23:1513–1518

    CAS  Google Scholar 

  • Kusba J, Li L, Gryczynski I, Piszczek G, Johnson M, Lakowicz JR (2002) Lateral diffusion coefficients in membranes measured by resonance energy transfer and a new algorithm for diffusion in two dimensions. Biophys J 82:1358–1372

    CAS  PubMed  Google Scholar 

  • Leulliot N, Ghomi M, Scalamani G, Bertier G (1999) Ground state properties of the nucleic acid constituents studied by density functional calculations. I. Conformational features of ribose, dimethyl phosphate, uridine, cytidine, 5'-methyl phosphate-uridine, and 3'-methyl phosphate-uridine. J Phys Chem A 103:8716–8724

    Article  CAS  Google Scholar 

  • Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 2000:426–433

    Google Scholar 

  • Lipowsky R, Sackman E (eds) (1995) Structure and dynamics of membranes: from cells to vesicles. Handbook of biological physics, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    Article  CAS  PubMed  Google Scholar 

  • Pastor RW, Venable RM (1993) Molecular and stochastic dynamics simulation of lipid membranes. In: van Gunsteren WF, Weiner PK, Wilkinson AJ (eds) Computer simulation of biomolecular systems: theoretical and experimental applications, vol 2. Escom, Leiden, pp 443–463

    Google Scholar 

  • Pastor RW, Venable RM, Feller SE (2002) Lipid bilayers, NMR relaxation and computer simulations. Acc Chem Res 35:438–446

    Article  CAS  PubMed  Google Scholar 

  • Petrache HI, Dodd SW, Brown MF (2000) Area per lipid and acyl chain length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys J 79:3172–3192

    CAS  PubMed  Google Scholar 

  • Ramachandran GN, Sasisekharan V (1969) Conformation of polypeptides and proteins. Adv Protein Chem 23:283–437

    Google Scholar 

  • Ryckaert JP, Bellemans A (1975) Molecular dynamics of liquid n-butane near its boiling point. Chem Phys Lett 30:123–126

    CAS  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    CAS  Google Scholar 

  • Schlenkrich M, Brickmann J, MacKerell AD Jr, Karplus M (1996) An empirical potential energy function for phospholipids: criteria for parameter optimization and applications. In: Merz K, Roux B (eds) Biological membranes: a molecular perspective from computation and experiment. Birkhauser, Boston, pp 31–81

    Google Scholar 

  • Schuler LD (2000) Molecular dynamics simulation of aggregates of lipids: development of force-field parameters and application to membranes and micelles. PhD thesis, ETH-Zürich, Zürich, Switzerland

    Google Scholar 

  • Schuler LD, van Gunsteren WF (2000) On the choice of dihedral angle potential energy functions for n-alkanes. Mol Simulation 25:301–319

    CAS  Google Scholar 

  • Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218

    Article  CAS  Google Scholar 

  • Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    CAS  Google Scholar 

  • Seelig J, Niederberger W (1974) Deuterium labelled lipids as structural probes in liquid crystalline bilayers. J Am Chem Soc 96:2069–2072

    CAS  Google Scholar 

  • Small DM (1986) The physical chemistry of lipids from alkanes to phospholipids. In: Hanahan D (ed) Handbook of lipid research, vol 4. Plenum, New York

  • Smondyrev AM, Berkowitz ML (1999) United atom force field for phospholipid membranes: constant pressure molecular dynamics simulation of dipalmitoyl-phosphatidylcholine/water system. J Comput Chem 20:531–545

    Article  CAS  Google Scholar 

  • Stouch TR, Ward KB, Altieri A, Hagler AT (1991) Simulation of lipid crystals: characterisation of potential energy functions and parameters for lecithin molecules. J Comput Chem 12:1033–1046

    CAS  Google Scholar 

  • Tieleman DP, Berendsen HJC (1996) Molecular dynamics of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. J Chem Phys 105:4871–4880

    CAS  Google Scholar 

  • Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270

    CAS  PubMed  Google Scholar 

  • Tieleman DP, Hess B, Sansom MSP (2002) Analysis and evaluation of channel models: simulations of alamethicin. Biophys J 83: (in press)

  • Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) A generalised reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459

    CAS  Google Scholar 

  • Tobias DJ, Tu K, Klein ML (1997) Atomic scale molecular dynamics simulations of lipid membranes. Curr Opin Colloid Interface Sci 2:115–126

    Google Scholar 

  • van Gunsteren WF, Berendsen HJC (1987) Groningen molecular simulation (GROMOS) library manual. Biomos, Groningen, The Netherlands

  • van Gunsteren WF, Berendsen HJC (1990) Computer simulation of molecular dynamics: methodology, applications and perspectives in chemistry. Angew Chem Int Ed Engl 29:992–1023

    Google Scholar 

  • van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Hochschulverlag an der ETH Zürich/Biomos, Zürich/ Groningen

    Google Scholar 

  • van Gunsteren WF, Daura X, Mark AE (1998) The GROMOS force field. In: Schleyer PvR (ed) Encyclopedia of computational chemistry, vol 2. Wiley, Chichester, pp 1211–1216

  • Wiberg KB, Wong MW (1993) Solvent effects. 4. Effect of solvent on the E/Z energy difference for methyl formate and methyl acetate. J Am Chem Soc 115:1078–1084

    CAS  Google Scholar 

Download references

Acknowledgements

D.P.T. is a Scholar of the Alberta Heritage Foundation for Medical Research. Financial support by the National Center of Competence in Research (NCCR) Structural Biology of the Swiss National Science Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indira Chandrasekhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekhar, I., Kastenholz, M., Lins, R.D. et al. A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur Biophys J 32, 67–77 (2003). https://doi.org/10.1007/s00249-002-0269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-002-0269-4

Keywords

Navigation