Skip to main content
Log in

Vibrio cholerae O1 Inhabit Intestines and Spleens of Fish in Aquaculture Ponds

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Vibrio cholerae is the causative agent of cholera, an acute diarrheal disease that spreads locally and globally in epidemics and pandemics. Although it was discovered that fish harbor V. cholerae strains in their intestines, most investigations revealed non-toxic V. cholerae serogroups in fish. Due to the rarity of toxigenic V. cholerae serogroups, it is difficult to cultivate these strains from environmental samples. Hence, here we aimed to uncover evidence of the occurrence of toxigenic V. cholerae in the intestines and spleens of various fish species. By using molecular detection tools, we show that V. cholerae O1 and strains positive for the cholera toxin inhabit both healthy and diseased fish intestines and spleens, suggesting that fish may serve as intermediate vectors of toxigenic V. cholerae. No significant differences were found between the abundance of toxigenic V. cholerae (either O1 or cholera toxin positive strains) in the healthy and the diseased fish intestines or spleens. In conclusion, a variety of fish species may serve as potential vectors and reservoirs of toxigenic V. cholerae as they form a link between the other reservoirs of V. cholerae (chironomids, copepods, and waterbirds). Similarly, they may aid in the spread of this bacterium between water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The raw datasets generated and analyzed during the study are available from the corresponding author upon reasonable request.

References

  1. Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. Lancet 363:223–232. https://doi.org/10.1016/s0140-6736(03)15328-7

    Article  PubMed  CAS  Google Scholar 

  2. World Health Organization (2023) Disease Outbreak News; Cholera – Global situation. Available at: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON437

  3. Colwell R, Huq A (2001) Marine ecosystems and Cholera. Hydrobiologia 460:141–145. https://doi.org/10.1023/A:1013111016642

    Article  Google Scholar 

  4. Hood M, Winter PA (1997) Attachment of Vibrio cholerae under various environmental conditions and to selected substrates. FEMS Microbiol Ecol 22:215–223. https://doi.org/10.1111/j.1574-6941.1997.tb00373.x

    Article  CAS  Google Scholar 

  5. Haley BJ, Chen A, Grim CJ et al (2012) Vibrio cholerae in a historically cholera-free country. Environ Microbiol Rep 4:381–389. https://doi.org/10.1111/j.1758-2229.2012.00332.x

    Article  PubMed  Google Scholar 

  6. Broza M, Halpern M (2001) Chironomids egg masses and Vibrio cholerae Nature 412:40. https://doi.org/10.1038/35083691

    Article  PubMed  CAS  Google Scholar 

  7. Halpern M, Broza YB, Mittler S, Arakawa E, Broza M (2004) Chironomid egg masses as a natural reservoir of Vibrio cholerae Non-O1 and Non-O139 in Freshwater habitats. Microb Ecol 47:341–349. https://doi.org/10.1007/s00248-003-2007-6

    Article  PubMed  CAS  Google Scholar 

  8. Broza M, Gancz H, Halpern M, Kashi Y (2005) Adult non-biting midges: possible windborne carriers of Vibrio cholerae non-O1 non-O139. Environ Microbiol 7:576–585. https://doi.org/10.1111/j.1462-2920.2005.00745.x

    Article  PubMed  Google Scholar 

  9. Senderovich Y, Gershtein Y, Halewa E, Halpern M (2008) Vibrio cholerae and Aeromonas; do they share a mutual host? ISME J 2:276–283. https://doi.org/10.1038/ismej.2007.114

    Article  PubMed  CAS  Google Scholar 

  10. Halpern M, Senderovich Y (2015) Chironomid microbiome. Microb Ecol 70:1–8. https://doi.org/10.1007/s00248-014-0536-9

    Article  PubMed  Google Scholar 

  11. Laviad-Shitrit S, Sela R, Thorat L et al (2020) Identification of chironomid species as natural reservoirs of toxigenic Vibrio cholerae strains with pandemic potential. PLoS Negl Trop Dis 23:e0008959. https://doi.org/10.1371/journal.pntd.0008959

    Article  CAS  Google Scholar 

  12. Senderovich Y, Izhaki I, Halpern M (2010) Fish as reservoirs and vectors of Vibrio cholerae PLoS ONE 5:e8607. https://doi.org/10.1371/journal.pone.0008607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Jones JL, Benner RA Jr, Hara-Kudo DPA (2013) Vibrio densities in the intestinal contents of finfish from coastal Alabama. Agric Food Anal Bacteriol 3:186–194

    Google Scholar 

  14. Halpern M, Izhaki I (2017) Fish as hosts of Vibrio cholerae Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.00282

  15. Schlater LK, Blackburn BO, Harrington R et al (1981) A non-O1 Vibrio cholerae isolated from a goose. Avian Dis 25:199–201

    Article  PubMed  CAS  Google Scholar 

  16. Lee JV, Bashford DJ, Donovan TJ, Furniss AL, West PA (1982) The incidence of Vibrio cholerae in water, animals and birds in Kent, England. J Appl Bateriol 52:281–291

    Article  CAS  Google Scholar 

  17. Ogg JE, Ryder RA, Smith HL Jr (1989) Isolation of Vibrio cholerae from aquatic birds in Colorado and Utah. Appl Environ Microbiol 55:95–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Laviad-Shitrit S, Izhaki I, Arakawa E, Halpern M (2018) Wild waterfowl as potential vectors of Vibrio cholerae and Aeromonas species. Trop Med Int Health 23:758–764. https://doi.org/10.1111/tmi.13069

    Article  PubMed  CAS  Google Scholar 

  19. Halpern M, Senderovich Y, Izhaki I (2008) Waterfowl — the missing link in epidemic and pandemic Cholera dissemination ? PLoS Pathog 4:e1000173. https://doi.org/10.1371/journal.ppat.1000173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Laviad-Shitrit S, Izhaki I, Halpern M (2019) Accumulating evidence suggests that some waterbird species are potential vectors of Vibrio cholerae PLoS Pathog 15:e1007814. https://doi.org/10.1371/journal.ppat.1007814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Laviad-Shitrit S, Lev-Ari T, Katzir G, Sharaby Y, Izhaki I, Halpern M (2017) Great cormorants (Phalacrocorax carbo) as potential vectors for the dispersal of Vibrio cholerae Sci Rep 7:7973. https://doi.org/10.1038/s41598-017-08434-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Johansen R, Needham JR, Colquhoun DJ, Poppe TT, Smith AJ (2006) Guidelines for health and welfare monitoring of fish used in research. Lab Anim 40:323–340. https://doi.org/10.1258/002367706778476451

    Article  PubMed  CAS  Google Scholar 

  23. Ofek T, Lalzar M, Izhaki I, Halpern M (2022) Intestine and spleen microbiota composition in healthy and diseased tilapia. Anim Microbiome 4:50. https://doi.org/10.1186/s42523-022-00201-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Nandi B, Nandy RK, Mukhopadhyay S, Nair GB, Shimada T, Ghose AC (2000) Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW J Clin Microbiol 38:4145–4151. https://doi.org/10.1128/JCM.38.11.4145-4151.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yamasaki S, Garg S, Nair GB, Takaeda Y (1999) Distribution of Vibrio cholerae O1 antigen biosynthesis genes among O139 and other non-O1 serogroups of Vibrio cholerae FEMS Microbiol Lett 179:115–121. https://doi.org/10.1111/j.1574-6968.1999.tb08716.x

    Article  PubMed  CAS  Google Scholar 

  26. Rivera ING, Lipp EK, Gil A, Choopun N, Huq A, Colwell RR (2003) Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae O1 and O139 from aquatic ecosystems. Environ Microbiol 5:599–606. https://doi.org/10.1046/j.1462-2920.2003.00443.x

    Article  PubMed  CAS  Google Scholar 

  27. Plesník V, Procházková E (2006) Vibrio cholerae O1 in a fish aquarium. Epidemiol Mikrobiol Imunol (Article in Czech) 55:30–31

    Google Scholar 

  28. du Preez M, van der Merwe MR, Cumbana A, le Roux W (2010) A survey of Vibrio cholerae O1 and O139 in estuarine waters and sediments of Beira. Mozambique Water SA 36:615–620. https://doi.org/10.4314/wsa.v36i5.61995

    Article  Google Scholar 

  29. Hossain ZZ, Farhana I, Tulsiani SM, Begum A, Jensen PK (2018) Transmission and toxigenic potential of Vibrio cholerae in hilsha fish (Tenualosa ilisha) for human consumption in Bangladesh. Front Microbiol 9:222. https://doi.org/10.3389/fmicb.2018.00222

    Article  PubMed  PubMed Central  Google Scholar 

  30. Torres-Vitela MR, Castillo A, Finne G, Rodriguez-Garcia MO, Martinez-Gonzales NE, Navarro-Hidalgo V (1997) Incidence of Vibrio cholerae in fresh fish and ceviche in Guadalajara, Mexico. J Food Prot 60:237–241. https://doi.org/10.4315/0362-028X-60.3.237

    Article  PubMed  Google Scholar 

  31. Kumar R, Lalitha KV (2013) Prevalence and molecular characterization of Vibrio cholerae O1, non-O1 and non-O139 in tropical seafood in Cochin, India. Foodborne Pathog Dis 10:278–283. https://doi.org/10.1089/fpd.2012.1310

    Article  PubMed  CAS  Google Scholar 

  32. Hounmanou YMG, Mdegela RH, Dougnon TV et al (2016) Toxigenic Vibrio cholerae O1 in vegetables and fish raised in wastewater irrigated fields and stabilization ponds during a non-cholera outbreak period in Morogoro, Tanzania: an environmental health study. BMC Res Notes 9:1–8. https://doi.org/10.1186/s13104-016-2283-0

    Article  CAS  Google Scholar 

  33. Hounmanou YMG, Leekitcharoenphon P, Hendriksen RS et al (2019) Surveillance and genomics of toxigenic Vibrio cholerae O1 from fish, phytoplankton and water in Lake Victoria, Tanzania. Front Microbiol 10:2974. https://doi.org/10.3389/fmicb.2019.02974

    Article  PubMed  PubMed Central  Google Scholar 

  34. Felsenfeld O (1963) Some observations on the Cholera (El Tor) epidemic in 1961–62. Bull Wld Hlth Org 28:289–296

    CAS  Google Scholar 

  35. Runft DL, Mitchell KC, Abuaita BH et al (2014) Zebrafish as a natural host model for Vibrio cholerae colonization and transmission. Appl Environ Microbiol 80:1710–1717. https://doi.org/10.1128/AEM.03580-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hounmanou YMG, Mdegela RH, Dougnon TV et al (2019) Tilapia (Oreochromis niloticus) as a putative reservoir host for survival and transmission of Vibrio cholerae O1 biotype El Tor in the aquatic environment. Front Microbiol 10:1215. https://doi.org/10.3389/fmicb.2019.01215

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sack RB, Siddique AK, Longini IM Jr et al (2003) A 4-year study of the epidemiology of Vibrio cholerae in four rural areas of Bangladesh. J Infect Dis 187:96–101. https://doi.org/10.1086/345865

    Article  PubMed  Google Scholar 

  38. Alam M, Islam A, Bhuiyan NA et al (2011) Clonal transmission, dual peak, and off-season Cholera in Bangladesh. Infect Ecol Epidemiol 1:7273. https://doi.org/10.3402/iee.v1i0.7273

    Article  Google Scholar 

  39. Swartz TA (1972) Cholera: recent Israeli experience with Cholera. Proc Roy Soc Med 65:428–432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ramamurthy T, Mutreja A, Weill F-X, Das B, Ghosh A, Nair GB (2019) Revisiting the global epidemiology of Cholera in conjunction with the genomics of Vibrio cholerae Front Public Heal 7:203. https://doi.org/10.3389/fpubh.2019.00237

    Article  Google Scholar 

Download references

Funding

This work was supported by the India-Israel Joint UGC-ISF grant (Grant No. 2728/17) and by the United States-Israel Binational Science Foundation, BSF (Grant No. 2015103).

Author information

Authors and Affiliations

Authors

Contributions

TO, II, and MH conceived and designed the experiments. II and MH contributed reagents/materials and analysis tools. TO and BT performed the experiments. TO, BT, II, and ML, analyzed the data. MH wrote the first manuscript draft. All authors discussed the results and reviewed and commented on the manuscript and approved the submitted version.

Corresponding author

Correspondence to Malka Halpern.

Ethics declarations

Ethics Approval

All methods were performed following relevant guidelines and regulations. The Committee of Animal Experimentation of the University of Haifa approved all experimental procedures and animal care (permit 638/19).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ofek, T., Trabelcy, B., Izhaki, I. et al. Vibrio cholerae O1 Inhabit Intestines and Spleens of Fish in Aquaculture Ponds. Microb Ecol 87, 20 (2024). https://doi.org/10.1007/s00248-023-02330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00248-023-02330-7

Keywords

Navigation