Skip to main content

Advertisement

Log in

The Mycobiome of Bats in the American Southwest Is Structured by Geography, Bat Species, and Behavior

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bats are widespread mammals that play key roles in ecosystems as pollinators and insectivores. However, there is a paucity of information about bat-associated microbes, in particular their fungal communities, despite the important role microbes play in host health and overall host function. The emerging fungal disease, white-nose syndrome, presents a potential challenge to the bat microbiome and understanding healthy bat-associated taxa will provide valuable information about potential microbiome-pathogen interactions. To address this knowledge gap, we collected 174 bat fur/skin swabs from 14 species of bats captured in five locations in New Mexico and Arizona and used high-throughput sequencing of the fungal internal transcribed (ITS) region to characterize bat-associated fungal communities. Our results revealed a highly heterogeneous bat mycobiome that was structured by geography and bat species. Furthermore, our data suggest that bat-associated fungal communities are affected by bat foraging, indicating the bat skin microbiota is dynamic on short time scales. Finally, despite the strong effects of site and species, we found widespread and abundant taxa from several taxonomic groups including the genera Alternaria and Metschnikowia that have the potential to be inhibitory towards fungal and bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data and code from this study are available on GitHub: https://github.com/pattyjk/bat_mycobiome.

References

  1. Abarenkov K et al (2010) The UNITE Database for molecular identification of fungi – recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  2. Ange-Stark, Meghan et al (2019) White-nose syndrome restructures bat skin microbiomes. BioRxiv. https://doi.org/10.1101/614842 (April 4, 2023)

  3. Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, Kilpatrick AM, Powers KE, Foster JT, McKenzie VJ (2016) Deconstructing the bat skin microbiome: influences of the host and the environment. Front Microbiol 7:7153

    Article  Google Scholar 

  4. Banerjee A, Baker ML, Kulcsar K, Misra Plowright R, Mossman K (2020) Novel insights into immune systems of bats. Front Immunol 11:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bataille A, Cashins SD, Grogan L et al (2015) Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc R Soc B: Biol Sci 282:20143127

    Article  Google Scholar 

  6. Bogan MA, Cryan PM, Valdez EW, Ellison LE, O’Shea TJ (2003) Western crevice and cavity-roosting bats. pp 69–77 Report U.S Geological Survey Reston VA. http://pubs.er.usgs.gov/publication/70180874

  7. Bowen JL, Kearns PJ, Byrnes JE et al (2017) Lineage overwhelms environmental conditions in determining rhizosphere bacterial community structure in a cosmopolitan invasive plantNature. Communications 8:1–8

    CAS  Google Scholar 

  8. Buck JC, Weinstein SB, Young HS (2018) Ecological and evolutionary consequences of parasite avoidance. Trends Ecol Evol 33:619–632

    Article  CAS  PubMed  Google Scholar 

  9. Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155

    Article  CAS  PubMed  Google Scholar 

  10. Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522

    Article  CAS  PubMed  Google Scholar 

  11. Cheng Y, Fox S, Pemberton Hogg C, Papenfuss AT, Belov K (2015) The Tasmanian devil microbiome–implications for conservation and management. Microbiome 3:76

    Article  PubMed  PubMed Central  Google Scholar 

  12. Choudoir MJ, Barberán A, Menninger HL, Dunn RR, Fierer N (2018) Variation in range size and dispersal capabilities of microbial taxa. Ecology 99:322–334

    Article  PubMed  Google Scholar 

  13. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clayton JB, Gomez A, Amato K, Knights D, Travis DA, Blekman R, Knight R, Leigh S, Stumpf R, Wolf T, Glander KE, Cabana F, Johnson TJ (2018) The gut microbiome of nonhuman primates: lessons in ecology and evolution. Am J Primatol 80:e22867

    Article  PubMed  Google Scholar 

  15. Cole JR, Wang Q, Fish JA et al (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642

    Article  CAS  PubMed  Google Scholar 

  16. Cornelison CT, Keel MK, Gabriel KT, Barlament CK, Tucker TA, Pierce GE, Crow SA (2014) A preliminary report on the contact-independent antagonism of Pseudogymnoascusdestructans by Rhodococcus rhodochrous strain DAP96253. BMC Microbiol 141:1–7

    Google Scholar 

  17. Cornelison CT, Gabriel KT, Barlament C, Crow SA (2014) Inhibition of Pseudogymnoascusdestructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds. Mycopathologia 1771–2:1–10

    Article  Google Scholar 

  18. Cryan PM, Meteyer CU, Boyles JG, Blehert DS (2010) Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol 8:1–8

    Article  Google Scholar 

  19. Cuscó A, Belanger JM, Gershony L, Islas-Trejo A, Levy K, Medrano JF, Sánchez A, Oberbauer AM, Francino O (2017) Individual signatures and environmental factors shape skin microbiota in healthy dogs. Microbiome S:139

    Article  Google Scholar 

  20. Csutak O, Vassu T, Cornea P, Grebenisan I (2007) Genetic characterization of two new Metschnikowia strains with antifungal activity. Rom Biotechnol Lett 122:3175

    Google Scholar 

  21. Dura J et al (2014) Karst evolution of the Garraf Massif (Barcelona, Spain): doline formation, chronology and archaeo-palaeontological archives. J Cave Karst Stud 76:69–87

    Article  Google Scholar 

  22. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2619:2460–2461

    Article  Google Scholar 

  23. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2716:2194–2200

    Article  Google Scholar 

  24. Fenster SD et al (2019) Examination of fungal diversity present on mexican free-tailed bats, tadarida brasiliensis mexicana, in Colorado. Southwest Nat 63(4):256–267

    Article  Google Scholar 

  25. Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchkoski CM, Kunz TH (2010) An emerging disease causes regional population collapse of a common North American bat species. Science 329:679–682

    Article  CAS  PubMed  Google Scholar 

  26. Grisnik M, Bowers O, Moore AJ, Jones BF, Campbell JR, Walker DM (2020) The cutaneous microbiota of bats has in vitro antifungal activity against the white nose pathogen. FEMS Microbiol Ecol 96:193

    Article  Google Scholar 

  27. Hamm PS, Caimi NA, Northup DE et al (2017) Western bats as a reservoir of novel Streptomyces species with antifungal activity. Appl Environ Microbiol 835:e03057-e3116

    Google Scholar 

  28. Holz Peter H et al (2018) Two subspecies of bent-winged bats (Miniopterus Orianae Bassanii and Oceanensis) in Southern Australia have diverse fungal skin flora but not Pseudogymnoascus destructans ed. Michelle L. Baker. PLOS One 13:0204282

    Google Scholar 

  29. Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 217:334–341

    Article  Google Scholar 

  30. Iacob S, Iacob DG, Luminos LM (2019) Intestinal microbiota as a host defense mechanism to infectious threats. Front Microbiol 9:3328

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ingala MR, Simmons NB, Perkins SL (2018) Bats are an untapped system for understanding microbiome evolution in mammals. mSphere 3:e00397-00418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson LJAN et al (2013) Psychrophilic and psychrotolerant fungi on bats and the presence of Geomyces spp. on bat wings prior to the arrival of white nose syndrome. Appl Environ Microbiol 79:5465–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson LJ, Miller AN, McCleery RA, McClanahan R, Kath JA, Lueschow S, Porras-Alfaro A (2013) Psychrophilic and psychrotolerant fungi on bats and the presence of Geomyces spp. on bat wings prior to the arrival of white nose syndrome. Appl Environ Microbiol 79:5465–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kearns PJ, Fischer S, Fernández-Beaskoetxea S et al (2017) Fight fungi with fungi: antifungal properties of the amphibian mycobiome. Front Microbiol 8:2494

    Article  PubMed  PubMed Central  Google Scholar 

  35. Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 46:719–728

    Article  Google Scholar 

  36. Kolodny O et al (2019) Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat Ecol Evol 3:116–124

    Article  PubMed  Google Scholar 

  37. Kunz TH, Kurta A (1988) Capture methods and holding devices. p 1–29. In Kunz TH ed. Ecological and behavioral methods for the study of bats. Smithsonian Institution Press Washington DC

  38. Kueneman JG, Bletz MC, McKenzie VJ et al (2019) Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat Ecol Evol 33:381–389

    Article  Google Scholar 

  39. Lee HB, Patriarca A, Magan N (2015) Alternaria in food: ecophysiology, mycotoxin production and toxicology. Mycobiology 432:93–106

    Article  Google Scholar 

  40. Lemieux-Labonté V, Simard A, Willis CKR, Lapointe FJ (2017) Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome. Microbiome 5:115

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lemieux-Labonté V, Tromas N, Shapiro BJ, Lapointe FJ (2016) Environment and host species shape the skin microbiome of captive neotropical bats. PeerJ 4:e2430

    Article  PubMed  PubMed Central  Google Scholar 

  42. Leser TD, Mølbak L (2009) Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol 119:2194–2206

    Article  Google Scholar 

  43. Levy M, Blacher E, Elinav E (2017) Microbiome, metabolites and host immunity. Curr Opin Microbiol 35:8–15

    Article  CAS  PubMed  Google Scholar 

  44. Li A, Li Z, Dai W, Parise KL, Leng H, Jin L, Liu S, Sun K, Hoyt JR, Feng J (2022) Bacterial community dynamics on bats and the implications for pathogen resistance. Environ Microbiol 24:1484–1498

    Article  CAS  PubMed  Google Scholar 

  45. Lorch JM, Palmer JM, Lindner DL et al (2016) First detection of bat white-nose syndrome in western North America. MSphere 14:e00148-e216

    Google Scholar 

  46. Lowrey L, Woodhams DC, Tacchi L, Salinas I (2015) Topographical mapping of the rainbow trout Oncorhynchus mykiss microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl Environ Microbiol 81:6915–6925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lutz HL, Jackson EW, Webala PW, Babyesiza WS, KerbisPeterhans JC, Demos TC, Patterson BD, Gilbert JA (2019) Ecology and host identity outweigh evolutionary history in shaping the bat microbiome. Msystems 4:e00511-e519

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF (2014) The microbiome: stress, health and disease. Mamm Genome 251:49–74

    Article  Google Scholar 

  49. Marcelino R V, Holmes EC, Sorrell TC (2020) The use of taxon-specific reference databases compromises metagenomic classification. BMC Genomics 21:184

    Article  Google Scholar 

  50. Muth C, Oravecz Z, Gabry J (2018) User-friendly Bayesian regression modeling: a tutorial with Rstanarm and Shinystan. Quant Methods Psychol 14:99–119

    Article  Google Scholar 

  51. Nguyen NH, Song Z, Bates ST et al (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  52. Nilsson RH, Larsson KH, Taylor AFS et al (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47(D1):D259–D264

    Article  CAS  PubMed  Google Scholar 

  53. Njus KA (2014) Molecular techniques for the identification of commensal fungal populations on cave roosting bats (Doctoral dissertation, University of Akron)

  54. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests MASS (2007) The vegan package. Community Ecol Packag 10:631-637 719

    Google Scholar 

  55. Ogórek R et al (2020) A culture-based ID of micromycetes on the wing membranes of greater mouse-eared bats (Myotis Myotis) from the ‘Nietoperek’ site (Poland). Animals 10:1337

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pannkuk EL et al (2013) Sebaceous lipid profiling of bat integumentary tissues: quantitative analysis of free fatty acids, monoacylglycerides, squalene, and sterols. Chem Biodivers 10:2122–2132

    Article  CAS  PubMed  Google Scholar 

  57. Pettit JL, O’Keefe JM (2017) Impacts of white-nose syndrome observed during long-term monitoring of a midwestern bat community. J Fish Wildl Manag 81:69–78

    Article  Google Scholar 

  58. Phillips CD, Hanson J, Wilkinson JE, Koenig L, Rees E, Webala P, Kingston T (2017) Microbiome structural and functional interactions across host dietary niche space. Integr Comp Biol 574:743–755

    Article  Google Scholar 

  59. Pietrangelo L, Bucci A, Maiuro L, Bulgarelli D, Naclerio G (2018) Unraveling the composition of the root-associated bacterial microbiota of Phragmitesaustralis and Typhalatifolia. Front Microbiol 9:1650

    Article  PubMed  PubMed Central  Google Scholar 

  60. R Core Team (2013) “R: A language and environment for statistical computing.” 201

  61. Racey PA (1982) Ecology of bat reproduction p 57–104. In: Kunz TH ed Ecology of bats. Plenum Press New York NY

  62. Reichard JD, Kunz TH (2009) White-nose syndrome inflicts lasting injuries to the wings of little brown myotis Myotislucifugus. Acta Chiropterol 11:457–464

    Article  Google Scholar 

  63. Rideout JR, He Y, Navas-Molina JA et al (2014) Subsampled open-reference clustering creates consistent comprehensive OTU definitions and scales to billions of sequences. PeerJ 2:e545

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rios-Sotelo GR, Northup D, Buecher D, Voyles JL (2018) Skin secretions may provide bats with innate immune defenses against Pseudogymnoascusdestructans. Integr Comp Biol 58:E188

    Google Scholar 

  65. Ross AA, Rodrigues Hoffmann A, Neufeld JD (2019) The skin microbiome of vertebrates. Microbiome 7:1–14

    Article  Google Scholar 

  66. Sisti M, Savini V (2014) Antifungal properties of the human Metschnikowia strain IHEM 25107. Folia Microbiol 593:263–266

    Article  Google Scholar 

  67. Sapkota TB, Jat ML, Aryal JP, Jat RK, Khatri-Chhetri A (2015) Climate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: some examples from cereal systemsof Indo-Gangetic Plains. J Integr Agric 148:1524–1533

    Article  Google Scholar 

  68. Swartz SM, Groves MS, Kim HD, Walsh WR (1996) Mechanical properties of bat wing membrane skin. J Zool 2392:357–378

    Article  Google Scholar 

  69. Thomas T, Moitinho-Silva L, Lurgi M et al (2016) Diversity structure and convergent evolution of the global sponge microbiome. Nat Commun 71:1–12

    Google Scholar 

  70. Thompson L, Sanders J, McDonald D et al (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vanderwolf KJ, Malloch D, McAlpine DF (2015) Fungi associated with over-wintering tricolored bats, Perimyotis subflavus, in a white-nose syndrome region of eastern Canada. J Cave Karst Stud 77:77

    Google Scholar 

  72. Vanderwolf KJ, Campbell LJ, Taylor DR, Goldberg TL, Blehert DS, Lorch JM (2021) Mycobiome traits associated with disease tolerance predict many Western north American bat species will be susceptible to White-nose syndrome. Microbiol Spectr 9:e00254-e321

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vanderwolf KJ et al (2021) Skin fungal assemblages of bats vary based on susceptibility to white-nose syndrome. ISME J 15:909–920

    Article  CAS  PubMed  Google Scholar 

  74. Vanderwolf KJ, McAlpine DF (2021) Hibernacula microclimate and declines in overwintering bats during an outbreak of white-nose syndrome near the northern range limit of infection in North America. Ecol Evol 115:2273–2288

    Article  Google Scholar 

  75. Visagie CM, Neriman YK, Vanderwolf JB, Renaud MW, Sumarah J, Houbraken R, Assebgui K, Seifert D (2020) Penicillium diversity in Canadian bat caves including a new species Pspeluncae. Fungal Systematicsand Evol 5:1

    Article  CAS  Google Scholar 

  76. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 1765:386–390

    Article  Google Scholar 

  78. Winter AS, Hathaway JJM, Kimble JC, Buecher DC, Valdez EW, Porras-Alfaro A, Young JM, Read KJH, Northup DE (2017) Skin and fur bacterial diversity and community structure on American southwestern bats: effects of habitat geography and bat traits. PeerJ 5:e3944

    Article  PubMed  PubMed Central  Google Scholar 

  79. Woodhams DC, Bletz MC, Becker CG et al (2020) Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol 21:1–20

    Google Scholar 

  80. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 4867:222–227

    Article  Google Scholar 

  81. Zepeda Mendoza ML, Xiong Z, Escalera-Zamudio M et al (2018) Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nat Ecol Evol 24:659–668

    Article  Google Scholar 

  82. Zhang T, Victor TR, Rajkumar SS, Li X, Okoniewski JC, Hicks AC, Davis AD, Broussard K, LaDeau SL, Chaturvedi S, Chaturvedi V (2014) Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyce s) destructans. PLoS One 9:e108714

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to Debbie Buecher, Buecher Biological Consulting for her netting and handling of bats in our sites across New Mexico and Arizona under her permits, and to Dr. Ernie Valdez for his assistance in netting and processing bats in the El Malpais Cerro Rendeja II and El Malpais Cerrito Comadre. We are also very grateful to the many field assistants from the various parks and BLM units who assisted with note taking and other tasks, to the Resources staff who worked with us to arrange permits and field support, to Northup Lab personnel who performed DNA extractions, and to MR DNA for sequencing services.

Permits

Permits were approved by the 2014 Arizona and New Mexico Game and Fish Department Scientific Collecting Permit (SP670210, SCI#3423, SCI#3350); National Park Service Scientific Collecting Permit (CAVE-2014-SCI-0012, ELMA-2013-SCI-0005, ELMA-2014-SCI-0001, and PARA-2012-SCI-0003).

Funding

This work was supported by Colorado Plateau Cooperative Ecosystems Studies Unit (CPCESU)—Carlsbad, Caverns National Park (CAVE) Award #P14AC00793, UNM-101; Colorado Plateau Cooperative Ecosystems Studies Unit (CPCESU)—El Malpais National Monument (ELMA) Award #P14AC00588, UNM-99; Colorado Plateau Cooperative Ecosystems Studies Unit (CPCESU)—Grand Canyon Parashant National Monument (PARA) Award #P12AC10812, UNM-80; Fort Stanton Cave Study Project (FSCSP) and Bureau of Land Management Agreement No. 13–0484; T&E, Inc. Award #TE-EAA-01222014; New Mexico Game & Fish Department Share with Wildlife Award #12516000000045; Western National Parks Association. DCW was supported by the National Science Foundation (IOS-1845634).

Author information

Authors and Affiliations

Authors

Contributions

ASW and DEN collected and processed all samples in coordination with other local scientists and bat biologists. PJK and DCW performed all sequences/statistical analyses with input from ASW and DEN. All authors contributed to authorship of the manuscript.

Corresponding author

Correspondence to Patrick J. Kearns.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1266 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kearns, P.J., Winter, A.S., Woodhams, D.C. et al. The Mycobiome of Bats in the American Southwest Is Structured by Geography, Bat Species, and Behavior. Microb Ecol 86, 1565–1574 (2023). https://doi.org/10.1007/s00248-023-02230-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02230-w

Keywords

Navigation