Skip to main content

Advertisement

Log in

Environmental Effects on Bee Microbiota

  • Review
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Anthropogenic activities and increased land use, which include industrialization, agriculture and urbanization, directly affect pollinators by changing habitats and floral availability, and indirectly by influencing their microbial composition and diversity. Bees form vital symbioses with their microbiota, relying on microorganisms to perform physiological functions and aid in immunity. As altered environments and climate threaten bees and their microbiota, characterizing the microbiome and its complex relationships with its host offers insights into understanding bee health. This review summarizes the role of sociality in microbiota establishment, as well as examines if such factors result in increased susceptibility to altered microbiota due to environmental changes. We characterize the role of geographic distribution, temperature, precipitation, floral resources, agriculture, and urbanization on bee microbiota. Bee microbiota are affected by altered surroundings regardless of sociality. Solitary bees that predominantly acquire their microbiota through the environment are particularly sensitive to such effects. However, the microbiota of obligately eusocial bees are also impacted by environmental changes despite typically well conserved and socially inherited microbiota. We provide an overview of the role of microbiota in plant-pollinator relationships and how bee microbiota play a larger role in urban ecology, offering microbial connections between animals, humans, and the environment. Understanding bee microbiota presents opportunities for sustainable land use restoration and aiding in wildlife conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rosenberg E, Koren O, Reshef L et al (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362. https://doi.org/10.1038/nrmicro1635

    Article  CAS  PubMed  Google Scholar 

  2. Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587:4153–4158. https://doi.org/10.1113/JPHYSIOL.2009.174136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Teeling H, Glöckner FO (2012) Current opportunities and challenges in microbial metagenome analysis—a bioinformatic perspective. Brief Bioinform 13:728–742. https://doi.org/10.1093/BIB/BBS039

    Article  PubMed  PubMed Central  Google Scholar 

  4. Winfree R (2010) The conservation and restoration of wild bees. Ann N Y Acad Sci 1195:169–197. https://doi.org/10.1111/J.1749-6632.2010.05449.X

    Article  PubMed  Google Scholar 

  5. Marshman J, Blay-Palmer A, Landman K (2019) Anthropocene crisis: climate change, pollinators, and food security. Environments 6:22. https://doi.org/10.3390/ENVIRONMENTS6020022

    Article  Google Scholar 

  6. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci U S A 99:16812–16816. https://doi.org/10.1073/PNAS.262413599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hung KLJ, Kingston JM, Albrecht M et al (2018) The worldwide importance of honey bees as pollinators in natural habitats. Proc R Soc B Biol Sci 285:1870. https://doi.org/10.1098/RSPB.2017.2140

    Article  Google Scholar 

  8. Potter A, LeBuhn G (2015) Pollination service to urban agriculture in San Francisco, CA. Urban Ecosyst 18:885–893. https://doi.org/10.1007/S11252-015-0435-Y

    Article  Google Scholar 

  9. Winfree R, Aguilar R, Vázquez DP et al (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076. https://doi.org/10.1890/08-1245.1

    Article  PubMed  Google Scholar 

  10. Ayers AC, Rehan SM (2021) Supporting bees in cities: how bees are influenced by local and landscape features. Insects 12:128. https://doi.org/10.3390/insects12020128

    Article  PubMed  PubMed Central  Google Scholar 

  11. McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176. https://doi.org/10.1007/S11252-007-0045-4

    Article  Google Scholar 

  12. Kelemen EP, Rehan SM (2021) Opposing pressures of climate and land-use change on a native bee. Glob Chang Biol 27:1017–1026. https://doi.org/10.1111/GCB.15468

    Article  CAS  Google Scholar 

  13. Mathiasson ME, Rehan SM (2020) Wild bee declines linked to plant-pollinator network changes and plant species introductions. Insect Conserv Divers 13:595–605. https://doi.org/10.1111/ICAD.12429

    Article  Google Scholar 

  14. Theodorou P, Radzevičiūtė R, Lentendu G et al (2020) Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat Commun 11:576. https://doi.org/10.1038/S41467-020-14496-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. PNAS 109:11002–11007. https://doi.org/10.1073/pnas.1202970109

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martinson VG, Danforth BN, Minckley RL et al (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20:619–628. https://doi.org/10.1111/J.1365-294X.2010.04959.X

    Article  PubMed  Google Scholar 

  17. Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://doi.org/10.1038/nrmicro.2016.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moran NA, Hansen AK, Powell JE, Sabree ZL (2012) Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One 7:e36393. https://doi.org/10.1371/JOURNAL.PONE.0036393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raymann K, Moran NA (2018) The role of the gut microbiome in health and disease of adult honey bee workers. Curr Opin Insect Sci 26:97–104. https://doi.org/10.1016/J.COIS.2018.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tarpy DR, Mattila HR, Newton ILG (2015) Development of the honey bee gut microbiome throughout the queen-rearing process. Appl Environ Microbiol 81:3182–3191. https://doi.org/10.1128/AEM.00307-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vernier CL, Chin IM, Adu-Oppong B et al (2020) The gut microbiome defines social group membership in honey bee colonies. Sci Adv 6:3431. https://doi.org/10.1126/SCIADV.ABD3431

    Article  Google Scholar 

  22. Yun JH, Jung MJ, Kim PS, Bae JW (2018) Social status shapes the bacterial and fungal gut communities of the honey bee. Sci Rep 8:2019. https://doi.org/10.1038/s41598-018-19860-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Callegari M, Crotti E, Fusi M et al (2021) Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. npj Biofilms Microbiomes 7:42. https://doi.org/10.1038/s41522-021-00212-9

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tauber JP, Nguyen V, Lopez D, Evans JD (2019) Effects of a resident yeast from the honeybee gut on immunity, microbiota, and Nosema disease. Insects 10:296. https://doi.org/10.3390/insects10090296

  25. Mockler BK, Kwong WK, Moran NA, Koch H (2018) Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees. Appl Environ Microbiol 84:2335–2352. https://doi.org/10.1128/AEM.02335-17

    Article  Google Scholar 

  26. Rubanov A, Russell KA, Rothman JA et al (2019) Intensity of Nosema ceranae infection is associated with specific honey bee gut bacteria and weakly associated with gut microbiome structure. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-40347-6

    Article  CAS  Google Scholar 

  27. Kwong WK, Mancenido AL, Moran NA (2017) Immune system stimulation by the native gut microbiota of honey bees. R Soc Open Sci 4:170003. https://doi.org/10.1098/rsos.170003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vásquez A, Forsgren E, Fries I et al (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7:e33188. https://doi.org/10.1371/JOURNAL.PONE.0033188

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang Z, Mu X, Cao Q et al (2022) Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism. Nat Commun 13:2307. https://doi.org/10.1038/s41467-022-29760-0

    Article  CAS  Google Scholar 

  30. Li L, Solvi C, Zhang F et al (2021) Gut microbiome drives individual memory variation in bumblebees. Nat Commun 12:1–10. https://doi.org/10.1038/s41467-021-26833-4

    Article  CAS  Google Scholar 

  31. Fünfhaus A, Ebeling J, Genersch E (2018) Bacterial pathogens of bees. Curr Opin insect Sci 26:89–96. https://doi.org/10.1016/J.COIS.2018.02.008

    Article  PubMed  Google Scholar 

  32. Becchimanzi A, Nicoletti R (2022) Aspergillus-bees: a dynamic symbiotic association. Front Microbiol 13:968963. https://doi.org/10.3389/FMICB.2022.968963

    Article  PubMed  PubMed Central  Google Scholar 

  33. Foley K, Fazio G, Jensen AB, Hughes WOH (2014) The distribution of Aspergillus spp. opportunistic parasites in hives and their pathogenicity to honey bees. Vet Microbiol 169:203–210. https://doi.org/10.1016/J.VETMIC.2013.11.029

    Article  PubMed  Google Scholar 

  34. López-Uribe M, Lawrence B (2021) The biology of the bread that bees make. In: Fermentology. NC State University Libraries. https://doi.org/10.52750/340675

  35. Pachla A, Ptaszyńska AA, Wicha M et al (2021) Insight into probiotic properties of lactic acid bacterial endosymbionts of Apis mellifera L. derived from the Polish apiary. Saudi J Biol Sci 28:1890–1899. https://doi.org/10.1016/J.SJBS.2020.12.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tlais AZA, Polo A, Filannino P et al (2022) Biofilm formation as an extra gear for Apilactobacillus kunkeei to counter the threat of agrochemicals in honeybee crop. Microb Biotechnol 15:2160. https://doi.org/10.1111/1751-7915.14051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dharampal PS, Danforth BN, Steffan SA (2022) Exosymbiotic microbes within fermented pollen provisions are as important for the development of solitary bees as the pollen itself. Ecol Evol 12:e8788. https://doi.org/10.1002/ECE3.8788

    Article  PubMed  PubMed Central  Google Scholar 

  38. Daisley BA, Chmiel JA, Pitek AP et al (2020) Missing microbes in bees: how systematic depletion of key symbionts erodes immunity. Trends Microbiol 28:1010–1021. https://doi.org/10.1016/J.TIM.2020.06.006

    Article  CAS  PubMed  Google Scholar 

  39. Muñoz-Colmenero M, Baroja-Careaga I, Kovačić M et al (2020) Differences in honey bee bacterial diversity and composition in agricultural and pristine environments – a field study. Apidologie 51:1018–1037. https://doi.org/10.1007/s13592-020-00779-w

    Article  Google Scholar 

  40. Jones JC, Fruciano C, Hildebrand F et al (2018) Gut microbiota composition is associated with environmental landscape in honey bees. Ecol Evol 8:441–451. https://doi.org/10.1002/ECE3.3597

    Article  PubMed  Google Scholar 

  41. Li C, Tang M, Li X, Zhou X (2022) Community dynamics in structure and function of honey bee gut bacteria in response to winter dietary shift. MBio 13:e01131-e1222. https://doi.org/10.1128/MBIO.01131-22

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mallinger RE, Gratton C (2015) Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator-dependent crop. J Appl Ecol 52:323–330. https://doi.org/10.1111/1365-2664.12377

    Article  Google Scholar 

  43. Demeter I, Balog A, Sárospataki M (2021) Variation of small and large wild bee communities under honeybee pressure in highly diverse natural habitats. Front Ecol Evol 9:846. https://doi.org/10.3389/FEVO.2021.750236

    Article  Google Scholar 

  44. Voulgari-Kokota A, McFrederick QS, Steffan-Dewenter I, Keller A (2019) Drivers, diversity, and functions of the solitary-bee microbiota. Trends Microbiol 27:1034–1044. https://doi.org/10.1016/J.TIM.2019.07.011

    Article  CAS  PubMed  Google Scholar 

  45. Kapheim KM, Johnson MM, Jolley M (2021) Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees. Sci Rep 11:2993. https://doi.org/10.1038/s41598-021-82573-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nguyen PN, Rehan SM (2022) Developmental microbiome of the small carpenter bee, Ceratina calcarata. Environ DNA 4:808–819. https://doi.org/10.1002/EDN3.291

    Article  CAS  Google Scholar 

  47. Cohen H, McFrederick QS, Philpott SM (2020) Environment shapes the microbiome of the blue orchard bee, Osmia lignaria. Microb Ecol 80:897–907. https://doi.org/10.1007/S00248-020-01549-Y

    Article  PubMed  Google Scholar 

  48. Bosmans L, Pozo MI, Verreth C et al (2018) Habitat-specific variation in gut microbial communities and pathogen prevalence in bumblebee queens (Bombus terrestris). PLoS One 13:e0204612. https://doi.org/10.1371/JOURNAL.PONE.0204612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dew RM, McFrederick QS, Rehan SM (2020) Diverse diets with consistent core microbiome in wild bee pollen provisions. Insects 11:E499. https://doi.org/10.3390/insects11080499

    Article  Google Scholar 

  50. McFrederick QS, Rehan SM (2019) Wild bee pollen usage and microbial communities co-vary across landscapes. Microb Ecol 77:513–522. https://doi.org/10.1007/s00248-018-1232-y

    Article  CAS  PubMed  Google Scholar 

  51. McFrederick QS, Rehan SM (2016) Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol Ecol 25:2302–2311. https://doi.org/10.1111/mec.13608

    Article  CAS  PubMed  Google Scholar 

  52. McFrederick QS, Thomas JM, Neff JL et al (2017) Flowers and wild megachilid bees share microbes. Microb Ecol 73:188–200. https://doi.org/10.1007/s00248-016-0838-1

    Article  PubMed  Google Scholar 

  53. Wang J, Jia H (2016) Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol 14:508–522. https://doi.org/10.1038/nrmicro.2016.83

    Article  CAS  PubMed  Google Scholar 

  54. Regan T, Barnett MW, Laetsch DR et al (2018) Characterisation of the British honey bee metagenome. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-07426-0

    Article  CAS  Google Scholar 

  55. Bovo S, Ribani A, Utzeri VJ et al (2018) Shotgun metagenomics of honey DNA: evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLoS One 13:e0205575. https://doi.org/10.1371/JOURNAL.PONE.0205575

    Article  PubMed  PubMed Central  Google Scholar 

  56. Galbraith DA, Fuller ZL, Ray AM et al (2018) Investigating the viral ecology of global bee communities with high-throughput metagenomics. Sci Rep 8:8879. https://doi.org/10.1038/s41598-018-27164-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shell WA, Rehan SM (2022) Comparative metagenomics reveals expanded insights into intra- and interspecific variation among wild bee microbiomes. Commun Biol 5:603. https://doi.org/10.1038/s42003-022-03535-1

    Article  PubMed  PubMed Central  Google Scholar 

  58. McFrederick QS, Wcislo WT, Taylor DR et al (2012) Environment or kin: whence do bees obtain acidophilic bacteria? Mol Ecol 21:1754–1768. https://doi.org/10.1111/J.1365-294X.2012.05496.X

    Article  PubMed  Google Scholar 

  59. Voulgari-Kokota A, Steffan-Dewenter I, Keller A (2020) Susceptibility of red mason bee larvae to bacterial threats due to microbiome exchange with imported pollen provisions. Insects 11:373. https://doi.org/10.3390/insects11060373

    Article  PubMed  PubMed Central  Google Scholar 

  60. Figueroa LL, Maccaro JJ, Krichilsky E et al (2021) Why did the bee eat the chicken? Symbiont gain, loss, and retention in the vulture bee microbiome. MBio 12:e02317-e2321. https://doi.org/10.1128/MBIO.02317-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Manirajan BA, Ratering S, Rusch V et al (2016) Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environ Microbiol 18:5161–5174. https://doi.org/10.1111/1462-2920.13524

    Article  Google Scholar 

  62. Voulgari-Kokota A, Grimmer G, Steffan-Dewenter I, Keller A (2019) Bacterial community structure and succession in nests of two megachilid bee genera. FEMS Microbiol Ecol 95:218. https://doi.org/10.1093/FEMSEC/FIY218

    Article  Google Scholar 

  63. Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 78:2830–2840. https://doi.org/10.1128/AEM.07810-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Powell JE, Eiri D, Moran NA, Rangel J (2018) Modulation of the honey bee queen microbiota: effects of early social contact. PLoS One 13:e0200527. https://doi.org/10.1371/JOURNAL.PONE.0200527

    Article  PubMed  PubMed Central  Google Scholar 

  65. Su Q, Wang Q, Mu X et al (2021) Strain-level analysis reveals the vertical microbial transmission during the life cycle of bumblebee. Microbiome 9:1–14. https://doi.org/10.1186/S40168-021-01163-1

    Article  Google Scholar 

  66. Wu J, Lang H, Mu X et al (2021) Honey bee genetics shape the strain-level structure of gut microbiota in social transmission. Microbiome 9:225. https://doi.org/10.1186/S40168-021-01174-Y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Holley JAC, Jackson MN, Pham AT et al (2022) Carpenter bees (Xylocopa) harbor a distinctive gut microbiome related to that of honey bees and bumble bees. Appl Environ Microbiol 88:e0020322. https://doi.org/10.1128/AEM.00203-22

    Article  PubMed  Google Scholar 

  68. Handy MY, Sbardellati DL, Yu M et al (2022) Incipiently social carpenter bees (Xylocopa) host distinctive gut bacterial communities and display geographical structure as revealed by full-length PacBio 16S rRNA sequencing. Mol Ecol. https://doi.org/10.1111/MEC.16736

    Article  PubMed  Google Scholar 

  69. Liberti J, Kay T, Quinn A et al (2022) The gut microbiota affects the social network of honeybees. Nat Ecol Evol 6:1471–1479. https://doi.org/10.1038/s41559-022-01840-w

  70. Neu AT, Allen EE, Roy K (2021) Defining and quantifying the core microbiome: challenges and prospects. Proc Natl Acad Sci U S A 118:e2104429118. https://doi.org/10.1073/PNAS.2104429118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Custer GF, Gans M, van Diepen LTA et al (2023) Comparative analysis of core microbiome assignments: implications for ecological synthesis. mSystems 8:e01066-22. https://doi.org/10.1128/msystems.01066-22

    Article  PubMed  PubMed Central  Google Scholar 

  72. Risely A (2020) Applying the core microbiome to understand host–microbe systems. J Anim Ecol 89:1549–1558. https://doi.org/10.1111/1365-2656.13229

    Article  PubMed  Google Scholar 

  73. Anderson KE, Maes P (2022) Social microbiota and social gland gene expression of worker honey bees by age and climate. Sci Rep 12:10690. https://doi.org/10.1038/s41598-022-14442-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Copeland DC, Anderson KE, Mott BM (2022) Early queen development in honey bees: social context and queen breeder source affect gut microbiota and associated metabolism. Microbiol Spectr 10:e00383-e422. https://doi.org/10.1128/spectrum.00383-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jones JC, Fruciano C, Marchant J et al (2018) The gut microbiome is associated with behavioural task in honey bees. Insectes Soc 65:419–429. https://doi.org/10.1007/S00040-018-0624-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kowallik V, Mikheyev AS (2021) Honey bee larval and adult microbiome life stages are effectively decoupled with vertical transmission overcoming early life perturbations. MBio 12:e02966-e3021. https://doi.org/10.1128/mBio.02966-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Almeida EL, Ribiere C, Frei W et al (2022) Geographical and seasonal analysis of the honeybee microbiome. Microb Ecol. https://doi.org/10.1007/S00248-022-01986-X

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sun H, Mu X, Zhang K et al (2022) Geographical resistome profiling in the honeybee microbiome reveals resistance gene transfer conferred by mobilizable plasmids. Microbiome 10:69. https://doi.org/10.1186/S40168-022-01268-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nguyen PN, Rehan SM (2022) The effects of urban land use gradients on wild bee microbiomes. Front Microbiol 13:992660. https://doi.org/10.3389/FMICB.2022.992660

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bleau N, Bouslama S, Giovenazzo P, Derome N (2020) Dynamics of the honeybee (Apis mellifera) gut microbiota throughout the overwintering period in Canada. Microorganisms 8:1146. https://doi.org/10.3390/MICROORGANISMS8081146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Manirajan BA, Maisinger C, Ratering S et al (2018) Diversity, specificity, co-occurrence and hub taxa of the bacterial–fungal pollen microbiome. FEMS Microbiol Ecol 94:112. https://doi.org/10.1093/femsec/fiy112

    Article  CAS  Google Scholar 

  82. Sookhan N, Lorenzo A, Tatsumi S et al (2021) Linking bacterial diversity to floral identity in the bumble bee pollen basket. Environ DNA 3:669–680. https://doi.org/10.1002/EDN3.165

    Article  Google Scholar 

  83. Morris MM, Frixione NJ, Burkert AC et al (2020) Microbial abundance, composition, and function in nectar are shaped by flower visitor identity. FEMS Microbiol Ecol 96:fiaa003. https://doi.org/10.1093/FEMSEC/FIAA003

    Article  CAS  PubMed  Google Scholar 

  84. Keller A, McFrederick QS, Dharampal P et al (2021) (More than) Hitchhikers through the network: the shared microbiome of bees and flowers. Curr Opin Insect Sci 44:8–15. https://doi.org/10.1016/J.COIS.2020.09.007

    Article  PubMed  Google Scholar 

  85. Warren ML, Kram KE, Theiss KE (2020) Characterizing the nectar microbiome of the non-native tropical milkweed, Asclepias curassavica, in an urban environment. PLoS One 15:w0237561. https://doi.org/10.1371/JOURNAL.PONE.0237561

    Article  Google Scholar 

  86. Christensen SM, Munkres I, Vannette RL (2021) Nectar bacteria stimulate pollen germination and bursting to enhance microbial fitness. Curr Biol 31:4380. https://doi.org/10.1016/J.CUB.2021.07.016

    Article  Google Scholar 

  87. Westreich LR, Westreich ST, Tobin PC (2022) Bacterial and fungal symbionts in pollen provisions of a native solitary bee in urban and rural environments. Microb Ecol 1:1–12. https://doi.org/10.1007/S00248-022-02164-9

    Article  Google Scholar 

  88. Botías C, David A, Hill EM, Goulson D (2017) Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. Environ Pollut 222:73–82. https://doi.org/10.1016/J.ENVPOL.2017.01.001

    Article  PubMed  Google Scholar 

  89. Botías C, David A, Horwood J et al (2015) Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ Sci Technol 49:12731–12740. https://doi.org/10.1021/ACS.EST.5B03459

    Article  PubMed  Google Scholar 

  90. Pozo MI, van Kemenade G, van Oystaeyen A et al (2020) The impact of yeast presence in nectar on bumble bee behavior and fitness. Ecol Monogr 90:e01393. https://doi.org/10.1002/ECM.1393

    Article  Google Scholar 

  91. Yordanova M, Evison SEF, Gill RJ, Graystock P (2022) The threat of pesticide and disease co-exposure to managed and wild bee larvae. Int J Parasitol Parasites Wildl 17:319–326. https://doi.org/10.1016/J.IJPPAW.2022.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hotchkiss MZ, Poulain AJ, Forrest JRK (2022) Pesticide-induced disturbances of bee gut microbiotas. FEMS Microbiol Rev 46:1–22. https://doi.org/10.1093/FEMSRE/FUAB056

    Article  Google Scholar 

  93. Kakumanu ML, Reeves AM, Anderson TD et al (2016) Honey bee gut microbiome is altered by in-hive pesticide exposures. Front Microbiol 7:1255. https://doi.org/10.3389/fmicb.2016.01255

    Article  PubMed  PubMed Central  Google Scholar 

  94. Vidau C, Diogon M, Aufauvre J et al (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6:e21550. https://doi.org/10.1371/JOURNAL.PONE.0021550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Motta EVS, Raymann K, Moran NA (2018) Glyphosate perturbs the gut microbiota of honey bees. Proc Natl Acad Sci U S A 115:10305–10310. https://doi.org/10.1073/PNAS.1803880115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Raymann K, Motta EVS, Girard C et al (2018) Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Appl Environ Microbiol 84:e00545-e618. https://doi.org/10.1128/AEM.00545-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Daisley BA, Trinder M, McDowell TW et al (2017) Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model. Sci Rep 7:2703. https://doi.org/10.1038/s41598-017-02806-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Motta EVS, Powell JE, Leonard SP, Moran NA (2022) Prospects for probiotics in social bees. Philos Trans R Soc B 377:202110156. https://doi.org/10.1098/RSTB.2021.0156

    Article  Google Scholar 

  99. Cohen H, Ponisio LC, Russell KA et al (2022) Floral resources shape parasite and pathogen dynamics in bees facing urbanization. Mol Ecol 31:2157–2171. https://doi.org/10.1111/MEC.16374

    Article  PubMed  Google Scholar 

  100. Dillard BA, Chung AK, Gunderson AR et al (2022) Humanization of wildlife gut microbiota in urban environments. Elife 11:76381. https://doi.org/10.7554/ELIFE.76381

    Article  Google Scholar 

  101. Chua KO, Song SL, Sen YH et al (2018) Microbial community composition reveals spatial variation and distinctive core microbiome of the weaver ant Oecophylla smaragdina in Malaysia. Sci Rep 8:10777. https://doi.org/10.1038/s41598-018-29159-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arroyo-Correa B, Jordano P, Bartomeus I (2023) Intraspecific variation in species interactions promotes the feasibility of mutualistic assemblages. Ecol Lett 26:448–459. https://doi.org/10.1111/ELE.14163

  103. Perfectti F, Gómez JM, Bosch J (2009) The functional consequences of diversity in plant–pollinator interactions. Oikos 118:1430–1440. https://doi.org/10.1111/J.1600-0706.2009.17491.X

    Article  Google Scholar 

  104. Davis MF, Rankin SC, Schurer JM et al (2017) Checklist for One Health Epidemiological Reporting of Evidence (COHERE). One Heal 4:14–21. https://doi.org/10.1016/J.ONEHLT.2017.07.001

    Article  Google Scholar 

  105. Mackenzie JS, Jeggo M (2019) The One Health approach—why is it so important? Trop Med Infect Dis 4:88. https://doi.org/10.3390/TROPICALMED4020088

    Article  PubMed  PubMed Central  Google Scholar 

  106. Trinh P, Zaneveld JR, Safranek S, Rabinowitz PM (2018) One Health relationships between human, animal, and environmental microbiomes: a mini-review. Front Public Heal 6:235. https://doi.org/10.3389/FPUBH.2018.00235

    Article  Google Scholar 

  107. Mays Z, Hunter A, Campbell LG, Carlos-Shanley C (2021) The effects of captivity on the microbiome of the endangered Comal Springs riffle beetle (Heterelmis comalensis). FEMS Microbiol Lett 368:121. https://doi.org/10.1093/FEMSLE/FNAB121

    Article  Google Scholar 

  108. Chiang E, Deblois CL, Carey HV, Suen G (2022) Characterization of captive and wild 13-lined ground squirrel cecal microbiotas using Illumina-based sequencing. Anim Microbiome 4:1. https://doi.org/10.1186/S42523-021-00154-9

  109. Chua PYS, Bourlat SJ, Ferguson C et al (2023) Future of DNA-based insect monitoring. Trends Genet. https://doi.org/10.1016/J.TIG.2023.02.012

    Article  PubMed  Google Scholar 

  110. Tonietto RK, Larkin DJ (2018) Habitat restoration benefits wild bees: a meta-analysis. J Appl Ecol 55:582–590. https://doi.org/10.1111/1365-2664.13012

    Article  Google Scholar 

  111. Daisley BA, Pitek AP, Chmiel JA et al (2019) Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. ISME J 14:476–491. https://doi.org/10.1038/s41396-019-0541-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Corby-Harris V, Snyder LA, Schwan MR et al (2014) Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Appl Environ Microbiol 80:7460–7472. https://doi.org/10.1128/AEM.02043-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Floyd AS, Mott BM, Maes P et al (2020) Microbial ecology of European Foul Brood disease in the honey bee (Apis mellifera): towards a microbiome understanding of disease susceptibility. Insects 11:555. https://doi.org/10.3390/INSECTS11090555

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Rehan lab for their feedback and help in revising this manuscript. Funding was provided by an Ontario Graduate Scholarship to PNN, Weston Family Foundation Microbiome Initiative and NSERC Discovery Grants to SMR.

Funding

Funding was provided by an Ontario Graduate Scholarship to PNN, Weston Family Foundation Microbiome Initiative and NSERC Discovery Grants to SMR.

Author information

Authors and Affiliations

Authors

Contributions

PNN wrote the first draft of the manuscript and constructed all figures. SMR edited the manuscript and supervised the project.

Corresponding author

Correspondence to Sandra M. Rehan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

All authors read and approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, P.N., Rehan, S.M. Environmental Effects on Bee Microbiota. Microb Ecol 86, 1487–1498 (2023). https://doi.org/10.1007/s00248-023-02226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02226-6

Keywords

Navigation