Skip to main content
Log in

Bacterial Metal-Scavengers Newly Isolated from Indonesian Gold Mine-Impacted Area: Bacillus altitudinis MIM12 as Novel Tools for Bio-Transformation of Mercury

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Selikat river, located in the north part of Bengkulu Province, Indonesia, has critical environmental and ecological issues of contamination by mercury due to artisanal small-scale gold mining (ASGM) activities. The present study focused on the identification and bioremediation efficiency of the mercury-resistant bacteria (MRB) isolated from ASGM-impacted areas in Lebong Tambang village, Bengkulu Province, and analyzed their merA gene function in transforming Hg2+ to Hg0. Thirty-four MRB isolates were isolated, and four out of the 34 isolates exhibited not only the highest degree of resistance to Hg (up to 200 ppm) but also to cadmium (Cd), chromium (Cr), copper (Cu), and lead (Pb). Further analysis shows that all four selected isolates harbor a merA operon-encoded mercuric ion (Hg2+) reductase enzyme, with the Hg bioremediation efficiency varying from 71.60 to 91.30%. Additionally, the bioremediation efficiency for Cd, Cr, Cu, and Pb ranged from 54.36 to 98.37%. Among the 34, two isolates identified as Bacillus altitudinis possess effective and superior multi-metal degrading capacity up to 91.30% for Hg, 98.07% for Cu, and 54.36% for Cr. A pilot-scale study exhibited significant in situ bioremediation of Hg from gold mine tailings of 82.10 and 95.16% at 4- and 8-day intervals, respectively. Interestingly, translated nucleotide blast against bacteria and Bacilli merA sequence databases suggested that B. altitudinis harbor merA gene is the first case among Bacilli with the possibility exhibits a novel mechanism of bioremediation, considering our new finding. This study is the first to report the structural and functional Hg-resistant bacterial diversity of unexplored ASGM-impacted areas, emphasizing their biotechnological potential as novel tools for the biological transformation and adsorption of mercury and other toxic metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The 16S rRNA and merA sequences that support the findings of this study were deposited in GenBank-NCBI (National Center for Biotechnology Information) with accession codes OM654554, OM654555, OM654556, OM654557, UOG94996, UOG94997, UOG94998, and UOG94999.

References

  1. Pistilli M (2022) 12 largest producers of gold by country. In: INN News. https://investingnews.com/daily/resource-investing/precious-metals-investing/gold-investing/top-gold-producing-countries/. Accessed 11 May 2022

  2. Esdaile LJ, Chalker JM (2018) The mercury problem in artisanal and small-scale gold mining. Chem - A Eur J 24:6905–6916. https://doi.org/10.1002/chem.201704840

    Article  CAS  Google Scholar 

  3. mercuryconvention.org/ Minamata Convention on Mercury. https://www.mercuryconvention.org/. Accessed 24 May 2022

  4. Bernhardt A (2014) Top ten countries turning the corner on toxic pollution. In: Blacksm. Institute, GAHP, Green Cross Switz. http://goo.gl/dHq5Cp. Accessed 11 August 2022

  5. Bernhardt A (2016) 2015 world’s worst pollution problems report. In: Pure Earth. https://www.worstpolluted.org/docs/WWP15.pdf. Accessed 29 Aug 2022

  6. Tasharrofi S, Sadegh Hassani S, Taghdisian H, Sobat Z (2018) Environmentally friendly stabilized nZVI-composite for removal of heavy metals. In: New polymer nanocomposites for environmental remediation. Elsevier Inc., 623–642. https://doi.org/10.1016/B978-0-12-811033-1.00024-X

  7. Gerson JR, Szponar N, Zambrano AA et al (2022) Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining. Nat Commun 13:1–10. https://doi.org/10.1038/s41467-022-27997-3

    Article  CAS  Google Scholar 

  8. Okereafor U, Makhatha M, Mekuto L et al (2020) Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int J Environ Res Public Health 17:1–24. https://doi.org/10.3390/ijerph17072204

    Article  CAS  Google Scholar 

  9. Arief R, Sukandar M, Putra C, et al (2011) Penelitian geologi medis daerah Lebong Tambang Kabupaten Lebong, Provinsi Bengkulu. In: Bidang Mineral. 1–32

  10. FAO (2020) Water quality management and control of water pollution. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  11. Gworek B, Dmuchowski W, Baczewska-Dąbrowska AH (2020) Mercury in the terrestrial environment: a review. Environ Sci Eur 32. https://doi.org/10.1186/s12302-020-00401-x

  12. Li R, Wu H, DIng J, et al (2017) Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Sci Rep 7:1–9. https://doi.org/10.1038/srep46545

    Article  CAS  Google Scholar 

  13. Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J et al (2016) Mercury uptake and effects on growth in Jatropha curcas. J Environ Sci 48:120–125. https://doi.org/10.1016/j.jes.2015.10.036

    Article  CAS  Google Scholar 

  14. Kotwal DR, Shewale NB, Tambat US et al (2018) Bioremediation of mercury using mercury resistant bacteria. Res J Life Sci Bioinformatics, Pharm Chem Sci 4:145–156

    CAS  Google Scholar 

  15. Mahbub KR, Bahar MM, Labbate M et al (2017) Bioremediation of mercury: not properly exploited in contaminated soils! Appl Microbiol Biotechnol 101:963–976. https://doi.org/10.1007/s00253-016-8079-2

    Article  CAS  PubMed  Google Scholar 

  16. Velásquez-Riaño M, Benavides-Otaya HD (2017) Bioremediation techniques applied to aqueous media contaminated with mercury. Crit Rev Biotechnol 36:1124–1130. https://doi.org/10.3109/07388551.2015.1100156

    Article  CAS  Google Scholar 

  17. Alkorta I, Epelde L, Garbisu C (2017) Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation. FEMS Microbiol Lett 364:1–9. https://doi.org/10.1093/femsle/fnx200

    Article  CAS  Google Scholar 

  18. Norambuena J, Wang Y, Hanson T et al (2018) Low-molecular-weight thiols and thioredoxins are important players in Hg(II) resistance in Thermus thermophilus HB27. Appl Environ Microbiol 84:1–17. https://doi.org/10.1128/AEM.01931-17

    Article  CAS  Google Scholar 

  19. González Henao S, Ghneim-Herrera T (2021) Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Front Environ Sci 9:1–17. https://doi.org/10.3389/fenvs.2021.604216

    Article  Google Scholar 

  20. Baweja M, Nain L, Kawarabayasi Y, Shukla P (2016) Current technological improvements in enzymes toward their biotechnological applications. Front Microbiol 7:1–13. https://doi.org/10.3389/fmicb.2016.00965

    Article  Google Scholar 

  21. Schaefer JK, Szczuka A, Morel FMM (2014) Effect of divalent metals on Hg(II) uptake and methylation by bacteria. Environ Sci Technol 48:3007–3013. https://doi.org/10.1021/es405215v

    Article  CAS  PubMed  Google Scholar 

  22. Christakis CA, Barkay T, Boyd ES (2021) Expanded diversity and phylogeny of mer genes broadens mercury resistance paradigms and reveals an origin for MerA among thermophilic archaea. Front Microbiol 12:1–20. https://doi.org/10.3389/fmicb.2021.682605

    Article  Google Scholar 

  23. Krout IN, Scrimale T, Vorojeikina D, et al (2022) Organomercurial lyase (MerB)-mediated demethylation decreases bacterial methylmercury resistance in the absence of mercuric reductase (MerA). Appl Environ Microbiol 88. https://doi.org/10.1128/aem.00010-22

  24. Morimoto Y, Takamiya K (2020) Organomercury captured by lyase overexpressed Escherichia coli and its evaluation by in-cell radiometry*. Adv Enzym Res 08:19–26. https://doi.org/10.4236/aer.2020.82002

    Article  CAS  Google Scholar 

  25. Zheng R, Wu S, Ma N, Sun C (2018) Genetic and physiological adaptations of marine bacterium Pseudomonas stutzeri 273 to mercury stress. Front Microbiol 9:1–14. https://doi.org/10.3389/fmicb.2018.00682

    Article  Google Scholar 

  26. Jan AT, Azam M, Choi I et al (2016) Analysis for the presence of determinants involved in the transport of mercury across bacterial membrane from polluted water bodies of India. Brazilian J Microbiol 47:55–62. https://doi.org/10.1016/j.bjm.2015.11.023

    Article  CAS  Google Scholar 

  27. Mandragutti T, Dokka MK, Panchagnula B, Godi S (2021) Molecular characterization of marine bacterial isolates of Visakhapatnam coast—efficacy in dye decolorization and bioremediation of cadmium. J Genet Eng Biotechnol 19. https://doi.org/10.1186/s43141-021-00189-0

  28. Marchesi JR, Sato T, Weightman AJ et al (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799. https://doi.org/10.1128/AEM.64.2.795-799.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harsonowati W, Marian M, Surono M, Narisawa K (2020) The effectiveness of a dark septate endophytic fungus, Cladophialophora chaetospira SK51, to mitigate strawberry Fusarium wilt disease and with growth promotion activities. Front Microbiol 11:1–11. https://doi.org/10.3389/fmicb.2020.00585

    Article  Google Scholar 

  30. Sotero-Martins A, De Jesus MS, Lacerda M et al (2008) A conservative region of the mercuric reductase gene (merA) as a molecular marker of bacterial mercury resistance. Brazilian J Microbiol 39:307–310. https://doi.org/10.1590/S1517-83822008000200020

    Article  Google Scholar 

  31. Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725. https://doi.org/10.1128/AEM.06516-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  CAS  PubMed  Google Scholar 

  34. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. IBM Corp. (2021) IBM SPSS Statistics for Windows, version 28.0. https://www.ibm.com/products/spss-statistics

  36. USEPA (1997) Mercury study report to congress: vol V: health effects of mercury and mercury compounds. https://www.epa.gov/mercury/mercury-study-report-congress

  37. Ahmad S, Pandey A, Pathak VV (2020) Bioremediation of industrial waste for environmental safety. Bioremediation Ind Waste Environ Saf. https://doi.org/10.1007/978-981-13-3426-9

    Article  Google Scholar 

  38. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Molecular, clinical and environmental toxicicology volume 3: environmental toxicology. Mol Clin Environ Toxicol 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4

    Article  Google Scholar 

  39. Wang X, Li B, Ma T et al (2020) The NAD kinase OsNADK1 affects the intracellular redox balance and enhances the tolerance of rice to drought. BMC Plant Biol 20:7–12

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh S, Hiranmai RY (2021) Monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along NH 8A. Gujarat. Heliyon 7:e08284. https://doi.org/10.1016/j.heliyon.2021.e08284

    Article  CAS  PubMed  Google Scholar 

  41. Duan P, Khan S, Ali N et al (2020) Biotransformation fate and sustainable mitigation of a potentially toxic element of mercury from environmental matrices. Arab J Chem 13:6949–6965. https://doi.org/10.1016/j.arabjc.2020.06.041

    Article  CAS  Google Scholar 

  42. Narita M, Chiba K, Nishizawa H et al (2003) Diversity of mercury resistance determinants among Bacillus strains isolated from sediment of Minamata Bay. FEMS Microbiol Lett 223:73–82. https://doi.org/10.1016/S0378-1097(03)00325-2

    Article  CAS  PubMed  Google Scholar 

  43. Cardona GI, Escobar MC, Acosta-González A et al (2022) Highly mercury-resistant strains from different Colombian Amazon ecosystems affected by artisanal gold mining activities. Appl Microbiol Biotechnol 106:2775–2793. https://doi.org/10.1007/s00253-022-11860-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Amin A, Naveed M, Sarwar A et al (2022) In vitro and in silico studies reveal Bacillus cereus AA-18 as a potential candidate for bioremediation of mercury-contaminated wastewater. Front Microbiol 13:1–13. https://doi.org/10.3389/fmicb.2022.847806

    Article  Google Scholar 

  45. Radwan SS, DiM A-M, Kansour MK (2017) Calcium (II) - and dipicolinic acid mediated-biostimulation of oil-bioremediation under multiple stresses by heat, oil and heavy metals. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-10121-7

    Article  CAS  Google Scholar 

  46. Trisolini L, Gambacorta N, Gorgoglione R, et al (2019) Fad/nadh dependent oxidoreductases: from different amino acid sequences to similar protein shapes for playing an ancient function. J Clin Med 8. https://doi.org/10.3390/jcm8122117

  47. Ruggiero P, Terzano R, Spagnuolo M et al (2011) Hg bioavailability and impact on bacterial communities in a long-term polluted soil. J Environ Monit 13:145–156. https://doi.org/10.1039/c0em00183j

    Article  CAS  PubMed  Google Scholar 

  48. Iohara K, Iiyama R, Nakamura K et al (2001) The mer operon of a mercury-resistant Pseudoalteromonas haloplanktis strain isolated from Minamata Bay, Japan. Appl Microbiol Biotechnol 56:736–741. https://doi.org/10.1007/s002530100734

    Article  CAS  PubMed  Google Scholar 

  49. Zhang W, Chen L, Liu D (2012) Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93:1305–1314. https://doi.org/10.1007/s00253-011-3454-5

    Article  CAS  PubMed  Google Scholar 

  50. Sher S, Hussain SZ, Rehman A (2020) Phenotypic and genomic analysis of multiple heavy metal–resistant Micrococcus luteus strain AS2 isolated from industrial waste water and its potential use in arsenic bioremediation. Appl Microbiol Biotechnol 104:2243–2254. https://doi.org/10.1007/s00253-020-10351-2

    Article  CAS  PubMed  Google Scholar 

  51. Nurfitriani S, Arisoesilaningsih E, Nuraini Y, Handayanto E (2020) Bioaccumulation of mercury by bacteria isolated from small scale gold mining tailings in Lombok, Indonesia. J Ecol Eng 21:127–136. https://doi.org/10.12911/22998993/123247

    Article  Google Scholar 

  52. Li Y, Li D, Song B, Li Y (2022) The potential of mercury methylation and demethylation by 15 species of marine microalgae. Water Res 215. https://doi.org/10.1016/j.watres.2022.118266

  53. Varasteh T, Salazar V, Tschoeke D, et al (2021) Breviolum and Cladocopium are dominant among Symbiodiniaceae of the coral holobiont Madracis decactis. Microb Ecol 325–335. https://doi.org/10.1007/s00248-021-01868-8

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wiwiek Harsonowati: conceptualization, design research, methodology, conducted experiments, data analysis, visualization, investigation, writing—original draft, writing—review and editing final manuscript. Sri Rahayuningsih, Erny Yuniarti, Dwi Ningsih Susilowati, Dyah Manohara: methodology, investigation. Sipriyadi, Sri Widyaningsih, Alina Akhdiya, Yadi Suryadi, Titi Tentrem: investigation. All authors read and approved the manuscript.

Corresponding author

Correspondence to Wiwiek Harsonowati.

Ethics declarations

Ethics Approval and Consent to Participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harsonowati, W., Rahayuningsih, S., Yuniarti, E. et al. Bacterial Metal-Scavengers Newly Isolated from Indonesian Gold Mine-Impacted Area: Bacillus altitudinis MIM12 as Novel Tools for Bio-Transformation of Mercury. Microb Ecol 86, 1646–1660 (2023). https://doi.org/10.1007/s00248-023-02203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02203-z

Keywords

Navigation